Skip to content

Models

AnthropicModel

Bases: BaseModel

Source code in sweagent/agent/models.py
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
class AnthropicModel(BaseModel):
    MODELS = {
        "claude-instant": {
            "max_context": 100_000,
            "cost_per_input_token": 1.63e-06,
            "cost_per_output_token": 5.51e-06,
        },
        "claude-2.0": {
            "max_context": 100_000,
            "cost_per_input_token": 1.102e-05,
            "cost_per_output_token": 3.268e-05,
        },
        "claude-2.1": {
            "max_context": 100_000,
            "cost_per_input_token": 1.102e-05,
            "cost_per_output_token": 3.268e-05,
        },
        "claude-3-opus-20240229": {
            "max_context": 200_000,
            "max_tokens": 4096,  # Max tokens to generate for Claude 3 models
            "cost_per_input_token": 1.5e-05,
            "cost_per_output_token": 7.5e-05,
        },
        "claude-3-sonnet-20240229": {
            "max_context": 200_000,
            "max_tokens": 4096,
            "cost_per_input_token": 3e-06,
            "cost_per_output_token": 1.5e-05,
        },
        "claude-3-5-sonnet-20240620": {
            "max_context": 200_000,
            "max_tokens": 4096,
            "cost_per_input_token": 3e-06,
            "cost_per_output_token": 1.5e-05,
        },
        "claude-3-haiku-20240307": {
            "max_context": 200_000,
            "max_tokens": 4096,
            "cost_per_input_token": 2.5e-07,
            "cost_per_output_token": 1.25e-06,
        },
    }

    SHORTCUTS = {
        "claude-2": "claude-2.1",
        "claude-opus": "claude-3-opus-20240229",
        "claude-sonnet": "claude-3-sonnet-20240229",
        "claude-haiku": "claude-3-haiku-20240307",
        "claude-sonnet-3.5": "claude-3-5-sonnet-20240620",
    }

    def __init__(self, args: ModelArguments, commands: list[Command]):
        super().__init__(args, commands)

        # Set Anthropic key
        self.api = Anthropic(api_key=keys_config["ANTHROPIC_API_KEY"])

    def history_to_messages(
        self,
        history: list[dict[str, str]],
        is_demonstration: bool = False,
    ) -> str | list[dict[str, str]]:
        """
        Create `prompt` by filtering out all keys except for role/content per `history` turn
        Reference: https://docs.anthropic.com/claude/reference/complete_post
        """
        return anthropic_history_to_messages(self, history, is_demonstration)

    @retry(
        wait=wait_random_exponential(min=1, max=15),
        reraise=True,
        stop=stop_after_attempt(_MAX_RETRIES),
        retry=retry_if_not_exception_type((CostLimitExceededError, RuntimeError)),
    )
    def query(self, history: list[dict[str, str]]) -> str:
        """
        Query the Anthropic API with the given `history` and return the response.
        """
        return anthropic_query(self, history)

history_to_messages(history, is_demonstration=False)

Create prompt by filtering out all keys except for role/content per history turn Reference: https://docs.anthropic.com/claude/reference/complete_post

Source code in sweagent/agent/models.py
470
471
472
473
474
475
476
477
478
479
def history_to_messages(
    self,
    history: list[dict[str, str]],
    is_demonstration: bool = False,
) -> str | list[dict[str, str]]:
    """
    Create `prompt` by filtering out all keys except for role/content per `history` turn
    Reference: https://docs.anthropic.com/claude/reference/complete_post
    """
    return anthropic_history_to_messages(self, history, is_demonstration)

query(history)

Query the Anthropic API with the given history and return the response.

Source code in sweagent/agent/models.py
481
482
483
484
485
486
487
488
489
490
491
@retry(
    wait=wait_random_exponential(min=1, max=15),
    reraise=True,
    stop=stop_after_attempt(_MAX_RETRIES),
    retry=retry_if_not_exception_type((CostLimitExceededError, RuntimeError)),
)
def query(self, history: list[dict[str, str]]) -> str:
    """
    Query the Anthropic API with the given `history` and return the response.
    """
    return anthropic_query(self, history)

BaseModel

Source code in sweagent/agent/models.py
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
class BaseModel:
    MODELS = {}
    SHORTCUTS = {}

    def __init__(self, args: ModelArguments, commands: list[Command]):
        self.args = args
        self.commands = commands
        self.model_metadata = {}
        self.stats = APIStats()

        # Map `model_name` to API-compatible name `api_model`
        self.api_model = (
            self.SHORTCUTS[self.args.model_name] if self.args.model_name in self.SHORTCUTS else self.args.model_name
        )

        # Map model name to metadata (cost, context info)
        MODELS = {
            **{dest: self.MODELS[src] for dest, src in self.SHORTCUTS.items()},
            **self.MODELS,
        }
        if args.model_name in MODELS:
            self.model_metadata = MODELS[args.model_name]
        elif args.model_name.startswith("ft:"):
            ft_model = args.model_name.split(":")[1]
            self.model_metadata = MODELS[ft_model]
        elif args.model_name.startswith("ollama:"):
            self.api_model = args.model_name.split("ollama:", 1)[1]
            self.model_metadata = self.MODELS[self.api_model]
        elif args.model_name.startswith("azure:"):
            azure_model = args.model_name.split("azure:", 1)[1]
            self.model_metadata = MODELS[azure_model]
        elif args.model_name.startswith("bedrock:"):
            self.api_model = args.model_name.split("bedrock:", 1)[1]
            self.model_metadata = MODELS[self.api_model]
        elif args.model_name.startswith("groq:"):
            self.api_model = args.model_name.split("groq:", 1)[1]
            self.model_metadata = MODELS[self.api_model]
        else:
            msg = f"Unregistered model ({args.model_name}). Add model name to MODELS metadata to {self.__class__}"
            raise ValueError(msg)

    def reset_stats(self, other: APIStats | None = None):
        if other is None:
            self.stats = APIStats(total_cost=self.stats.total_cost)
            logger.info("Resetting model stats")
        else:
            # Make sure to copy the stats to avoid modifying the original
            self.stats = copy.deepcopy(other)

    def update_stats(self, input_tokens: int, output_tokens: int) -> float:
        """
        Calculates the cost of a response from the openai API.

        Args:
        input_tokens (int): The number of tokens in the prompt.
        output_tokens (int): The number of tokens in the response.

        Returns:
        float: The cost of the response.
        """
        # Calculate cost and update cost related fields
        cost = (
            self.model_metadata["cost_per_input_token"] * input_tokens
            + self.model_metadata["cost_per_output_token"] * output_tokens
        )
        self.stats.total_cost += cost
        self.stats.instance_cost += cost
        self.stats.tokens_sent += input_tokens
        self.stats.tokens_received += output_tokens
        self.stats.api_calls += 1

        # Log updated cost values to std. err
        logger.debug(
            f"input_tokens={input_tokens:,}, "
            f"output_tokens={output_tokens:,}, "
            f"instance_cost={self.stats.instance_cost:.2f}, "
            f"cost={cost:.2f}",
        )
        logger.debug(
            f"total_tokens_sent={self.stats.tokens_sent:,}, "
            f"total_tokens_received={self.stats.tokens_received:,}, "
            f"total_cost={self.stats.total_cost:.2f}, "
            f"total_api_calls={self.stats.api_calls:,}",
        )

        # Check whether total cost or instance cost limits have been exceeded
        if 0 < self.args.total_cost_limit <= self.stats.total_cost:
            logger.warning(f"Cost {self.stats.total_cost:.2f} exceeds limit {self.args.total_cost_limit:.2f}")
            msg = "Total cost limit exceeded"
            raise CostLimitExceededError(msg)

        if 0 < self.args.per_instance_cost_limit <= self.stats.instance_cost:
            logger.warning(f"Cost {self.stats.instance_cost:.2f} exceeds limit {self.args.per_instance_cost_limit:.2f}")
            msg = "Instance cost limit exceeded"
            raise CostLimitExceededError(msg)
        return cost

    def query(self, history: list[dict[str, str]]) -> str:
        msg = "Use a subclass of BaseModel"
        raise NotImplementedError(msg)

update_stats(input_tokens, output_tokens)

Calculates the cost of a response from the openai API.

Args: input_tokens (int): The number of tokens in the prompt. output_tokens (int): The number of tokens in the response.

Returns: float: The cost of the response.

Source code in sweagent/agent/models.py
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def update_stats(self, input_tokens: int, output_tokens: int) -> float:
    """
    Calculates the cost of a response from the openai API.

    Args:
    input_tokens (int): The number of tokens in the prompt.
    output_tokens (int): The number of tokens in the response.

    Returns:
    float: The cost of the response.
    """
    # Calculate cost and update cost related fields
    cost = (
        self.model_metadata["cost_per_input_token"] * input_tokens
        + self.model_metadata["cost_per_output_token"] * output_tokens
    )
    self.stats.total_cost += cost
    self.stats.instance_cost += cost
    self.stats.tokens_sent += input_tokens
    self.stats.tokens_received += output_tokens
    self.stats.api_calls += 1

    # Log updated cost values to std. err
    logger.debug(
        f"input_tokens={input_tokens:,}, "
        f"output_tokens={output_tokens:,}, "
        f"instance_cost={self.stats.instance_cost:.2f}, "
        f"cost={cost:.2f}",
    )
    logger.debug(
        f"total_tokens_sent={self.stats.tokens_sent:,}, "
        f"total_tokens_received={self.stats.tokens_received:,}, "
        f"total_cost={self.stats.total_cost:.2f}, "
        f"total_api_calls={self.stats.api_calls:,}",
    )

    # Check whether total cost or instance cost limits have been exceeded
    if 0 < self.args.total_cost_limit <= self.stats.total_cost:
        logger.warning(f"Cost {self.stats.total_cost:.2f} exceeds limit {self.args.total_cost_limit:.2f}")
        msg = "Total cost limit exceeded"
        raise CostLimitExceededError(msg)

    if 0 < self.args.per_instance_cost_limit <= self.stats.instance_cost:
        logger.warning(f"Cost {self.stats.instance_cost:.2f} exceeds limit {self.args.per_instance_cost_limit:.2f}")
        msg = "Instance cost limit exceeded"
        raise CostLimitExceededError(msg)
    return cost

BedrockModel

Bases: BaseModel

Source code in sweagent/agent/models.py
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
class BedrockModel(BaseModel):
    MODELS = {
        "anthropic.claude-instant-v1": {
            "max_context": 100_000,
            "max_tokens_to_sample": 4096,
            "cost_per_input_token": 8e-07,
            "cost_per_output_token": 2.4e-06,
        },
        "anthropic.claude-v2": {
            "max_context": 100_000,
            "max_tokens_to_sample": 4096,
            "cost_per_input_token": 8e-06,
            "cost_per_output_token": 2.4e-05,
        },
        "anthropic.claude-v2:1": {
            "max_context": 100_000,
            "max_tokens": 4096,
            "cost_per_input_token": 8e-06,
            "cost_per_output_token": 2.4e-05,
        },
        "anthropic.claude-3-opus-20240229-v1:0": {
            "max_context": 200_000,
            "max_tokens": 4096,
            "cost_per_input_token": 1.5e-05,
            "cost_per_output_token": 7.5e-05,
        },
        "anthropic.claude-3-sonnet-20240229-v1:0": {
            "max_context": 200_000,
            "max_tokens": 4096,
            "cost_per_input_token": 3e-06,
            "cost_per_output_token": 1.5e-05,
        },
        "anthropic.claude-3-haiku-20240307-v1:0": {
            "max_context": 200_000,
            "max_tokens": 4096,
            "cost_per_input_token": 2.5e-07,
            "cost_per_output_token": 1.25e-06,
        },
    }

    def __init__(self, args: ModelArguments, commands: list[Command]):
        super().__init__(args, commands)

        # Extract provider from model ID
        # https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html
        self.model_provider = self.api_model.split(".")[0]
        if self.model_provider == "anthropic":
            # Note: this assumes AWS credentials are already configured.
            # https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
            self.api = AnthropicBedrock()
        elif self.model_provider in ["ai21", "amazon", "cohere", "meta", "mistral"]:
            msg = f"{self.api_model} is not supported!"
            raise NotImplementedError(msg)
        else:
            msg = f"Provider {self.model_provider} is not supported by Amazon Bedrock!"
            raise ValueError(msg)

    def history_to_messages(
        self,
        history: list[dict[str, str]],
        is_demonstration: bool = False,
    ) -> str | list[dict[str, str]]:
        """
        Create `prompt` from the history of messages
        """
        if self.model_provider == "anthropic":
            return anthropic_history_to_messages(self, history, is_demonstration)
        else:
            msg = f"{self.api_model} is not supported!"
            raise NotImplementedError(msg)

    @retry(
        wait=wait_random_exponential(min=1, max=15),
        reraise=True,
        stop=stop_after_attempt(_MAX_RETRIES),
        retry=retry_if_not_exception_type((CostLimitExceededError, RuntimeError)),
    )
    def query(self, history: list[dict[str, str]]) -> str:
        """
        Query Amazon Bedrock with the given `history` and return the response.
        """
        if self.model_provider == "anthropic":
            return anthropic_query(self, history)
        else:
            msg = f"{self.api_model} is not supported!"
            raise NotImplementedError(msg)

history_to_messages(history, is_demonstration=False)

Create prompt from the history of messages

Source code in sweagent/agent/models.py
551
552
553
554
555
556
557
558
559
560
561
562
563
def history_to_messages(
    self,
    history: list[dict[str, str]],
    is_demonstration: bool = False,
) -> str | list[dict[str, str]]:
    """
    Create `prompt` from the history of messages
    """
    if self.model_provider == "anthropic":
        return anthropic_history_to_messages(self, history, is_demonstration)
    else:
        msg = f"{self.api_model} is not supported!"
        raise NotImplementedError(msg)

query(history)

Query Amazon Bedrock with the given history and return the response.

Source code in sweagent/agent/models.py
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
@retry(
    wait=wait_random_exponential(min=1, max=15),
    reraise=True,
    stop=stop_after_attempt(_MAX_RETRIES),
    retry=retry_if_not_exception_type((CostLimitExceededError, RuntimeError)),
)
def query(self, history: list[dict[str, str]]) -> str:
    """
    Query Amazon Bedrock with the given `history` and return the response.
    """
    if self.model_provider == "anthropic":
        return anthropic_query(self, history)
    else:
        msg = f"{self.api_model} is not supported!"
        raise NotImplementedError(msg)

HumanModel

Bases: BaseModel

Source code in sweagent/agent/models.py
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
class HumanModel(BaseModel):
    MODELS = {"human": {}}

    def __init__(self, args: ModelArguments, commands: list[Command]):
        super().__init__(args, commands)

        # Determine which commands require multi-line input
        self.multi_line_command_endings = {
            command.name: command.end_name for command in commands if command.end_name is not None
        }

    def history_to_messages(
        self,
        history: list[dict[str, str]],
        is_demonstration: bool = False,
    ) -> str | list[dict[str, str]]:
        """
        Create `messages` by filtering out all keys except for role/content per `history` turn
        """
        # Remove system messages if it is a demonstration
        if is_demonstration:
            history = [entry for entry in history if entry["role"] != "system"]
            return "\n".join([entry["content"] for entry in history])
        # Return history components with just role, content fields
        return [{k: v for k, v in entry.items() if k in ["role", "content"]} for entry in history]

    def query(self, history: list[dict[str, str]], action_prompt: str = "> ") -> str:
        """
        Logic for handling user input to pass to SWEEnv
        """
        action = input(action_prompt)
        command_name = action.split()[0] if action.strip() else ""

        # Special handling for multi-line input actions (i.e. edit)
        if command_name in self.multi_line_command_endings:
            buffer = [action]
            end_keyword = self.multi_line_command_endings[command_name]
            while True:
                action = input("... ")
                buffer.append(action)
                if action.rstrip() == end_keyword:
                    # Continue reading input until terminating keyword inputted
                    break
            action = "\n".join(buffer)
        elif action.strip() == "start_multiline_command":  # do arbitrary multi-line input
            buffer = []
            while True:
                action = input("... ")
                if action.rstrip() == "end_multiline_command":
                    break
                buffer.append(action)
            action = "\n".join(buffer)
        return action

history_to_messages(history, is_demonstration=False)

Create messages by filtering out all keys except for role/content per history turn

Source code in sweagent/agent/models.py
851
852
853
854
855
856
857
858
859
860
861
862
863
864
def history_to_messages(
    self,
    history: list[dict[str, str]],
    is_demonstration: bool = False,
) -> str | list[dict[str, str]]:
    """
    Create `messages` by filtering out all keys except for role/content per `history` turn
    """
    # Remove system messages if it is a demonstration
    if is_demonstration:
        history = [entry for entry in history if entry["role"] != "system"]
        return "\n".join([entry["content"] for entry in history])
    # Return history components with just role, content fields
    return [{k: v for k, v in entry.items() if k in ["role", "content"]} for entry in history]

query(history, action_prompt='> ')

Logic for handling user input to pass to SWEEnv

Source code in sweagent/agent/models.py
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
def query(self, history: list[dict[str, str]], action_prompt: str = "> ") -> str:
    """
    Logic for handling user input to pass to SWEEnv
    """
    action = input(action_prompt)
    command_name = action.split()[0] if action.strip() else ""

    # Special handling for multi-line input actions (i.e. edit)
    if command_name in self.multi_line_command_endings:
        buffer = [action]
        end_keyword = self.multi_line_command_endings[command_name]
        while True:
            action = input("... ")
            buffer.append(action)
            if action.rstrip() == end_keyword:
                # Continue reading input until terminating keyword inputted
                break
        action = "\n".join(buffer)
    elif action.strip() == "start_multiline_command":  # do arbitrary multi-line input
        buffer = []
        while True:
            action = input("... ")
            if action.rstrip() == "end_multiline_command":
                break
            buffer.append(action)
        action = "\n".join(buffer)
    return action

HumanThoughtModel

Bases: HumanModel

Source code in sweagent/agent/models.py
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
class HumanThoughtModel(HumanModel):
    MODELS = {"human_thought": {}}

    def query(self, history: list[dict[str, str]]) -> str:
        """
        Logic for handling user input (both thought + action) to pass to SWEEnv
        """
        thought_all = ""
        thought = input("Thought (end w/ END_THOUGHT): ")
        while True:
            if "END_THOUGHT" in thought:
                thought = thought.split("END_THOUGHT")[0]
                thought_all += thought
                break
            thought_all += thought
            thought = input("... ")

        action = super().query(history, action_prompt="Action: ")

        return f"{thought_all}\n```\n{action}\n```"

query(history)

Logic for handling user input (both thought + action) to pass to SWEEnv

Source code in sweagent/agent/models.py
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
def query(self, history: list[dict[str, str]]) -> str:
    """
    Logic for handling user input (both thought + action) to pass to SWEEnv
    """
    thought_all = ""
    thought = input("Thought (end w/ END_THOUGHT): ")
    while True:
        if "END_THOUGHT" in thought:
            thought = thought.split("END_THOUGHT")[0]
            thought_all += thought
            break
        thought_all += thought
        thought = input("... ")

    action = super().query(history, action_prompt="Action: ")

    return f"{thought_all}\n```\n{action}\n```"

InstantEmptySubmitTestModel

Bases: BaseModel

Source code in sweagent/agent/models.py
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
class InstantEmptySubmitTestModel(BaseModel):
    MODELS = {
        "instant_empty_submit": {
            "max_context": 100_000,
            "max_tokens_to_sample": 4096,
            "cost_per_input_token": 0,
            "cost_per_output_token": 0,
        }
    }

    def __init__(self, args: ModelArguments, commands: list[Command]):
        """This model immediately submits. Useful for testing purposes"""
        super().__init__(args, commands)
        self._action_idx = 0

    def query(self, history: list[dict[str, str]]) -> str:
        # Need to at least do _something_ to submit
        if self._action_idx == 0:
            self._action_idx = 1
            action = "DISCUSSION\nLet's reproduce the bug by creating a `reproduce.py` file.\n\n```\ncreate reproduce.py\n```\n"
        elif self._action_idx == 1:
            self._action_idx = 0
            action = "DISCUSSION\nThe task should be resolved, so let's submit the patch.\n\n```\nsubmit\n```\n"
        self.update_stats(0, 0)
        return action

__init__(args, commands)

This model immediately submits. Useful for testing purposes

Source code in sweagent/agent/models.py
973
974
975
976
def __init__(self, args: ModelArguments, commands: list[Command]):
    """This model immediately submits. Useful for testing purposes"""
    super().__init__(args, commands)
    self._action_idx = 0

ModelArguments dataclass

Bases: FrozenSerializable

Arguments configuring the model and its behavior.

Source code in sweagent/agent/models.py
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
@dataclass(frozen=True)
class ModelArguments(FrozenSerializable):
    """Arguments configuring the model and its behavior."""

    # Name of the model to use
    model_name: str
    # Cost limit for every instance (task)
    per_instance_cost_limit: float = 0.0
    # Total cost limit
    total_cost_limit: float = 0.0
    # Sampling temperature
    temperature: float = 1.0
    # Sampling top-p
    top_p: float = 1.0
    # Path to replay file when using the replay model
    replay_path: str | None = None
    # Host URL when using Ollama model
    host_url: str = "localhost:11434"

OllamaModel

Bases: BaseModel

Source code in sweagent/agent/models.py
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
class OllamaModel(BaseModel):
    MODELS = defaultdict(
        lambda: {
            "max_context": 128_000,
            "cost_per_input_token": 0,
            "cost_per_output_token": 0,
        },
    )

    def __init__(self, args: ModelArguments, commands: list[Command]):
        super().__init__(args, commands)
        from ollama import Client

        self.client = Client(host=args.host_url)

    def history_to_messages(
        self,
        history: list[dict[str, str]],
        is_demonstration: bool = False,
    ) -> str | list[dict[str, str]]:
        """
        Create `messages` by filtering out all keys except for role/content per `history` turn
        """
        # Remove system messages if it is a demonstration
        if is_demonstration:
            history = [entry for entry in history if entry["role"] != "system"]
            return "\n".join([entry["content"] for entry in history])
        # Return history components with just role, content fields
        return [{k: v for k, v in entry.items() if k in ["role", "content"]} for entry in history]

    @retry(
        wait=wait_random_exponential(min=1, max=15),
        reraise=True,
        stop=stop_after_attempt(_MAX_RETRIES),
        retry=retry_if_not_exception_type((CostLimitExceededError, RuntimeError)),
    )
    def query(self, history: list[dict[str, str]]) -> str:
        """
        Query the Ollama API with the given `history` and return the response.
        """
        response = self.client.chat(
            model=self.api_model,
            messages=self.history_to_messages(history),
            options={
                "temperature": self.args.temperature,
                "top_p": self.args.top_p,
            },
        )
        # Calculate + update costs, return response
        if "prompt_eval_count" in response:
            input_tokens = response["prompt_eval_count"]
        else:
            logger.warning(
                "Prompt eval count not found in response. Using 0. "
                "This might be because the prompt has been cached. "
                "See https://github.com/princeton-nlp/SWE-agent/issues/44 "
                "and https://github.com/ollama/ollama/issues/3427.",
            )
            input_tokens = 0
        output_tokens = response["eval_count"]
        self.update_stats(input_tokens, output_tokens)
        return response["message"]["content"]

history_to_messages(history, is_demonstration=False)

Create messages by filtering out all keys except for role/content per history turn

Source code in sweagent/agent/models.py
702
703
704
705
706
707
708
709
710
711
712
713
714
715
def history_to_messages(
    self,
    history: list[dict[str, str]],
    is_demonstration: bool = False,
) -> str | list[dict[str, str]]:
    """
    Create `messages` by filtering out all keys except for role/content per `history` turn
    """
    # Remove system messages if it is a demonstration
    if is_demonstration:
        history = [entry for entry in history if entry["role"] != "system"]
        return "\n".join([entry["content"] for entry in history])
    # Return history components with just role, content fields
    return [{k: v for k, v in entry.items() if k in ["role", "content"]} for entry in history]

query(history)

Query the Ollama API with the given history and return the response.

Source code in sweagent/agent/models.py
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
@retry(
    wait=wait_random_exponential(min=1, max=15),
    reraise=True,
    stop=stop_after_attempt(_MAX_RETRIES),
    retry=retry_if_not_exception_type((CostLimitExceededError, RuntimeError)),
)
def query(self, history: list[dict[str, str]]) -> str:
    """
    Query the Ollama API with the given `history` and return the response.
    """
    response = self.client.chat(
        model=self.api_model,
        messages=self.history_to_messages(history),
        options={
            "temperature": self.args.temperature,
            "top_p": self.args.top_p,
        },
    )
    # Calculate + update costs, return response
    if "prompt_eval_count" in response:
        input_tokens = response["prompt_eval_count"]
    else:
        logger.warning(
            "Prompt eval count not found in response. Using 0. "
            "This might be because the prompt has been cached. "
            "See https://github.com/princeton-nlp/SWE-agent/issues/44 "
            "and https://github.com/ollama/ollama/issues/3427.",
        )
        input_tokens = 0
    output_tokens = response["eval_count"]
    self.update_stats(input_tokens, output_tokens)
    return response["message"]["content"]

OpenAIModel

Bases: BaseModel

Source code in sweagent/agent/models.py
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
class OpenAIModel(BaseModel):
    MODELS = {
        "gpt-3.5-turbo-0125": {
            "max_context": 16_385,
            "cost_per_input_token": 5e-07,
            "cost_per_output_token": 1.5e-06,
        },
        "gpt-3.5-turbo-1106": {
            "max_context": 16_385,
            "cost_per_input_token": 1.5e-06,
            "cost_per_output_token": 2e-06,
        },
        "gpt-3.5-turbo-16k-0613": {
            "max_context": 16_385,
            "cost_per_input_token": 1.5e-06,
            "cost_per_output_token": 2e-06,
        },
        "gpt-4-32k-0613": {
            "max_context": 32_768,
            "cost_per_input_token": 6e-05,
            "cost_per_output_token": 0.00012,
        },
        "gpt-4-0613": {
            "max_context": 8_192,
            "cost_per_input_token": 3e-05,
            "cost_per_output_token": 6e-05,
        },
        "gpt-4-1106-preview": {
            "max_context": 128_000,
            "cost_per_input_token": 1e-05,
            "cost_per_output_token": 3e-05,
        },
        "gpt-4-0125-preview": {
            "max_context": 128_000,
            "cost_per_input_token": 1e-05,
            "cost_per_output_token": 3e-05,
        },
        "gpt-4-turbo-2024-04-09": {
            "max_context": 128_000,
            "cost_per_input_token": 1e-05,
            "cost_per_output_token": 3e-05,
        },
        "gpt-4o-2024-05-13": {
            "max_context": 128_000,
            "cost_per_input_token": 5e-06,
            "cost_per_output_token": 15e-06,
        },
        "gpt-4o-mini-2024-07-18": {
            "max_context": 128_000,
            "cost_per_input_token": 1.5e-07,
            "cost_per_output_token": 6e-07,
        },
        "o1-preview-2024-09-12": {
            "max_context": 128_000,
            "cost_per_input_token": 15e-06,
            "cost_per_output_token": 60e-06,
        },
        "o1-mini-2024-09-12": {
            "max_context": 128_000,
            "cost_per_input_token": 3e-6,
            "cost_per_output_token": 12e-6,
        },
    }

    SHORTCUTS = {
        "gpt3": "gpt-3.5-turbo-1106",
        "gpt3-legacy": "gpt-3.5-turbo-16k-0613",
        "gpt4": "gpt-4-1106-preview",
        "gpt4-legacy": "gpt-4-0613",
        "gpt4-0125": "gpt-4-0125-preview",
        "gpt3-0125": "gpt-3.5-turbo-0125",
        "gpt4-turbo": "gpt-4-turbo-2024-04-09",
        "gpt4o": "gpt-4o-2024-05-13",
        "gpt-4o-mini": "gpt-4o-mini-2024-07-18",
        "gpt4omini": "gpt-4o-mini-2024-07-18",
        "o1": "o1-preview-2024-09-12",
        "o1-mini": "o1-mini-2024-09-12",
    }

    def __init__(self, args: ModelArguments, commands: list[Command]):
        super().__init__(args, commands)

        logging.getLogger("openai").setLevel(logging.WARNING)
        logging.getLogger("httpx").setLevel(logging.WARNING)

        self._setup_client()

    def _setup_client(self):
        if self.args.model_name.startswith("azure"):
            logger.warning(
                "The --model CLI argument is ignored when using the Azure GPT endpoint. "
                "The model is determined by the AZURE_OPENAI_DEPLOYMENT key/"
                "environment variable (this might change in the future).",
            )
            self.api_model = keys_config["AZURE_OPENAI_DEPLOYMENT"]
            self.client = AzureOpenAI(
                api_key=keys_config["AZURE_OPENAI_API_KEY"],
                azure_endpoint=keys_config["AZURE_OPENAI_ENDPOINT"],
                api_version=keys_config.get("AZURE_OPENAI_API_VERSION", "2024-02-01"),
            )
        else:
            api_base_url: str | None = keys_config.get("OPENAI_API_BASE_URL", None)
            self.client = OpenAI(api_key=keys_config["OPENAI_API_KEY"], base_url=api_base_url)

    def history_to_messages(
        self,
        history: list[dict[str, str]],
        is_demonstration: bool = False,
    ) -> str | list[dict[str, str]]:
        """
        Create `messages` by filtering out all keys except for role/content per `history` turn
        """
        # Remove system messages if it is a demonstration
        if is_demonstration:
            history = [entry for entry in history if entry["role"] != "system"]
            return "\n".join([entry["content"] for entry in history])
        # Return history components with just role, content fields
        return [{k: v for k, v in entry.items() if k in ["role", "content"]} for entry in history]

    @retry(
        wait=wait_random_exponential(min=1, max=15),
        reraise=True,
        stop=stop_after_attempt(_MAX_RETRIES),
        retry=retry_if_not_exception_type((CostLimitExceededError, RuntimeError)),
    )
    def query(self, history: list[dict[str, str]]) -> str:
        """
        Query the OpenAI API with the given `history` and return the response.
        """
        try:
            # Perform OpenAI API call
            response = self.client.chat.completions.create(
                messages=self.history_to_messages(history),
                model=self.api_model,
                temperature=self.args.temperature,
                top_p=self.args.top_p,
            )
        except BadRequestError as e:
            logger.exception("BadRequestError")
            if "context window" in str(e) or getattr(e, "error", {}).get("code") == "context_length_exceeded":
                msg = f"Context window ({self.model_metadata['max_context']} tokens) exceeded"
                raise ContextWindowExceededError(msg) from e
            else:
                raise e
        # Calculate + update costs, return response
        input_tokens = response.usage.prompt_tokens
        output_tokens = response.usage.completion_tokens
        self.update_stats(input_tokens, output_tokens)
        return response.choices[0].message.content

history_to_messages(history, is_demonstration=False)

Create messages by filtering out all keys except for role/content per history turn

Source code in sweagent/agent/models.py
290
291
292
293
294
295
296
297
298
299
300
301
302
303
def history_to_messages(
    self,
    history: list[dict[str, str]],
    is_demonstration: bool = False,
) -> str | list[dict[str, str]]:
    """
    Create `messages` by filtering out all keys except for role/content per `history` turn
    """
    # Remove system messages if it is a demonstration
    if is_demonstration:
        history = [entry for entry in history if entry["role"] != "system"]
        return "\n".join([entry["content"] for entry in history])
    # Return history components with just role, content fields
    return [{k: v for k, v in entry.items() if k in ["role", "content"]} for entry in history]

query(history)

Query the OpenAI API with the given history and return the response.

Source code in sweagent/agent/models.py
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
@retry(
    wait=wait_random_exponential(min=1, max=15),
    reraise=True,
    stop=stop_after_attempt(_MAX_RETRIES),
    retry=retry_if_not_exception_type((CostLimitExceededError, RuntimeError)),
)
def query(self, history: list[dict[str, str]]) -> str:
    """
    Query the OpenAI API with the given `history` and return the response.
    """
    try:
        # Perform OpenAI API call
        response = self.client.chat.completions.create(
            messages=self.history_to_messages(history),
            model=self.api_model,
            temperature=self.args.temperature,
            top_p=self.args.top_p,
        )
    except BadRequestError as e:
        logger.exception("BadRequestError")
        if "context window" in str(e) or getattr(e, "error", {}).get("code") == "context_length_exceeded":
            msg = f"Context window ({self.model_metadata['max_context']} tokens) exceeded"
            raise ContextWindowExceededError(msg) from e
        else:
            raise e
    # Calculate + update costs, return response
    input_tokens = response.usage.prompt_tokens
    output_tokens = response.usage.completion_tokens
    self.update_stats(input_tokens, output_tokens)
    return response.choices[0].message.content

ReplayModel

Bases: BaseModel

Source code in sweagent/agent/models.py
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
class ReplayModel(BaseModel):
    MODELS = {"replay": {}}

    def __init__(self, args: ModelArguments, commands: list[Command]):
        super().__init__(args, commands)

        if self.args.replay_path is None or not Path(self.args.replay_path).exists():
            msg = "--replay_path must point to a file that exists to run a replay policy"
            raise ValueError(msg)

        self.replays = [
            list(json.loads(x).values())[0] for x in Path(self.args.replay_path).read_text().splitlines(keepends=True)
        ]
        self.replay_idx = 0
        self.action_idx = 0

    def _next_replay(self) -> None:
        """Called after last action"""
        self.replay_idx += 1
        self.action_idx = 0

    def query(self, history: list[dict[str, str]]) -> str:
        """
        Logic for tracking which replay action to pass to SWEEnv
        """
        actions = self.replays[self.replay_idx]
        try:
            action = actions[self.action_idx]
        except IndexError:
            msg = (
                "This seems to be an incomplete trajectory. "
                "We reached the end of it, but `submit` was not called. "
                "Calling it now."
            )
            logger.warning(msg)
            action = "```\nsubmit\n```"

        self.action_idx += 1

        # Assuming `submit` is always last action of replay trajectory
        if action == "submit":
            self._next_replay()

        return action

query(history)

Logic for tracking which replay action to pass to SWEEnv

Source code in sweagent/agent/models.py
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
def query(self, history: list[dict[str, str]]) -> str:
    """
    Logic for tracking which replay action to pass to SWEEnv
    """
    actions = self.replays[self.replay_idx]
    try:
        action = actions[self.action_idx]
    except IndexError:
        msg = (
            "This seems to be an incomplete trajectory. "
            "We reached the end of it, but `submit` was not called. "
            "Calling it now."
        )
        logger.warning(msg)
        action = "```\nsubmit\n```"

    self.action_idx += 1

    # Assuming `submit` is always last action of replay trajectory
    if action == "submit":
        self._next_replay()

    return action

TogetherModel

Bases: BaseModel

Source code in sweagent/agent/models.py
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
class TogetherModel(BaseModel):
    # Check https://docs.together.ai/docs/inference-models for model names, context
    # Check https://www.together.ai/pricing for pricing
    MODELS = {
        "meta-llama/Llama-2-13b-chat-hf": {
            "max_context": 4096,
            "cost_per_input_token": 2.25e-07,
            "cost_per_output_token": 2.25e-07,
        },
        "meta-llama/Llama-2-70b-chat-hf": {
            "max_context": 4096,
            "cost_per_input_token": 9e-07,
            "cost_per_output_token": 9e-07,
        },
        "mistralai/Mistral-7B-Instruct-v0.2": {
            "max_context": 32768,
            "cost_per_input_token": 2e-07,
            "cost_per_output_token": 2e-07,
        },
        "togethercomputer/RedPajama-INCITE-7B-Chat": {
            "max_context": 2048,
            "cost_per_input_token": 2e-07,
            "cost_per_output_token": 2e-07,
        },
        "mistralai/Mixtral-8x7B-Instruct-v0.1": {
            "max_context": 32768,
            "cost_per_input_token": 6e-07,
            "cost_per_output_token": 6e-07,
        },
    }

    SHORTCUTS = {
        "llama13b": "meta-llama/Llama-2-13b-chat-hf",
        "llama70b": "meta-llama/Llama-2-70b-chat-hf",
        "mistral7b": "mistralai/Mistral-7B-Instruct-v0.2",
        "mixtral8x7b": "mistralai/Mixtral-8x7B-Instruct-v0.1",
        "redpajama7b": "togethercomputer/RedPajama-INCITE-7B-Chat",
    }

    def __init__(self, args: ModelArguments, commands: list[Command]):
        super().__init__(args, commands)
        assert together.version >= "1.1.0", "Please upgrade to Together SDK v1.1.0 or later."

        # Set Together key
        together.api_key = keys_config["TOGETHER_API_KEY"]

    def history_to_messages(self, history: list[dict[str, str]], is_demonstration: bool = False) -> str:
        """
        Create `prompt` by filtering out all keys except for role/content per `history` turn
        """
        # Remove system messages if it is a demonstration
        if is_demonstration:
            history = [entry for entry in history if entry["role"] != "system"]
        # Map history to TogetherAI format
        mapping = {"user": "human", "assistant": "bot", "system": "bot"}
        prompt = [f'<{mapping[d["role"]]}>: {d["content"]}' for d in history]
        prompt = "\n".join(prompt)
        return f"{prompt}\n<bot>:"

    @retry(
        wait=wait_random_exponential(min=1, max=15),
        reraise=True,
        stop=stop_after_attempt(_MAX_RETRIES),
        retry=retry_if_not_exception_type((CostLimitExceededError, RuntimeError)),
    )
    def query(self, history: list[dict[str, str]]) -> str:
        """
        Query the Together API with the given `history` and return the response.
        """
        # Perform Together API call
        prompt = self.history_to_messages(history)
        # Anthropic's count_tokens is convenient because it caches and utilizes huggingface/tokenizers, so we will use.
        max_tokens_to_sample = self.model_metadata["max_context"] - Anthropic().count_tokens(prompt)
        completion = together.Complete.create(
            model=self.api_model,
            prompt=prompt,
            max_tokens=max_tokens_to_sample,
            stop=["<human>"],
            temperature=self.args.temperature,
            top_p=self.args.top_p,
        )
        # Calculate + update costs, return response
        response = completion["choices"][0]["text"].split("<human>")[0]
        input_tokens = completion["usage"]["prompt_tokens"]
        output_tokens = completion["usage"]["completion_tokens"]
        self.update_stats(input_tokens, output_tokens)
        return response

history_to_messages(history, is_demonstration=False)

Create prompt by filtering out all keys except for role/content per history turn

Source code in sweagent/agent/models.py
797
798
799
800
801
802
803
804
805
806
807
808
def history_to_messages(self, history: list[dict[str, str]], is_demonstration: bool = False) -> str:
    """
    Create `prompt` by filtering out all keys except for role/content per `history` turn
    """
    # Remove system messages if it is a demonstration
    if is_demonstration:
        history = [entry for entry in history if entry["role"] != "system"]
    # Map history to TogetherAI format
    mapping = {"user": "human", "assistant": "bot", "system": "bot"}
    prompt = [f'<{mapping[d["role"]]}>: {d["content"]}' for d in history]
    prompt = "\n".join(prompt)
    return f"{prompt}\n<bot>:"

query(history)

Query the Together API with the given history and return the response.

Source code in sweagent/agent/models.py
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
@retry(
    wait=wait_random_exponential(min=1, max=15),
    reraise=True,
    stop=stop_after_attempt(_MAX_RETRIES),
    retry=retry_if_not_exception_type((CostLimitExceededError, RuntimeError)),
)
def query(self, history: list[dict[str, str]]) -> str:
    """
    Query the Together API with the given `history` and return the response.
    """
    # Perform Together API call
    prompt = self.history_to_messages(history)
    # Anthropic's count_tokens is convenient because it caches and utilizes huggingface/tokenizers, so we will use.
    max_tokens_to_sample = self.model_metadata["max_context"] - Anthropic().count_tokens(prompt)
    completion = together.Complete.create(
        model=self.api_model,
        prompt=prompt,
        max_tokens=max_tokens_to_sample,
        stop=["<human>"],
        temperature=self.args.temperature,
        top_p=self.args.top_p,
    )
    # Calculate + update costs, return response
    response = completion["choices"][0]["text"].split("<human>")[0]
    input_tokens = completion["usage"]["prompt_tokens"]
    output_tokens = completion["usage"]["completion_tokens"]
    self.update_stats(input_tokens, output_tokens)
    return response

anthropic_history_to_messages(model, history, is_demonstration=False)

Create prompt by filtering out all keys except for role/content per history turn Reference: https://docs.anthropic.com/claude/reference/complete_post

Source code in sweagent/agent/models.py
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
def anthropic_history_to_messages(
    model: AnthropicModel | BedrockModel,
    history: list[dict[str, str]],
    is_demonstration: bool = False,
) -> str | list[dict[str, str]]:
    """
    Create `prompt` by filtering out all keys except for role/content per `history` turn
    Reference: https://docs.anthropic.com/claude/reference/complete_post
    """
    # Preserve behavior for older models
    if model.api_model in ["claude-instant", "claude-2.0"] or (
        isinstance(model, BedrockModel) and model.api_model in ["anthropic.claude-instant-v1", "anthropic.claude-v2"]
    ):
        # Remove system messages if it is a demonstration
        if is_demonstration:
            history = [entry for entry in history if entry["role"] != "system"]
        # Map history to Claude format
        prompt = "\n\n"
        for entry in history:
            if entry["role"] in {"user", "system"}:
                prompt += f'{HUMAN_PROMPT} {entry["content"]}\n\n'
            elif entry["role"] == "assistant":
                prompt += f'{AI_PROMPT} {entry["content"]}\n\n'
        prompt += AI_PROMPT
        return prompt

    # Remove system messages if it is a demonstration
    if is_demonstration:
        history = [entry for entry in history if entry["role"] != "system"]
        return "\n".join([entry["content"] for entry in history])

    # Return history components with just role, content fields (no system message)
    messages = [
        {k: v for k, v in entry.items() if k in ["role", "content"]} for entry in history if entry["role"] != "system"
    ]
    compiled_messages = []  # Combine messages from the same role
    last_role = None
    for message in reversed(messages):
        if last_role == message["role"]:
            compiled_messages[-1]["content"] = message["content"] + "\n" + compiled_messages[-1]["content"]
        else:
            compiled_messages.append(message)
        last_role = message["role"]
    compiled_messages = list(reversed(compiled_messages))
    # Replace any empty content values with a "(No output)"
    for message in compiled_messages:
        if message["content"].strip() == "":
            message["content"] = "(No output)"
    return compiled_messages

anthropic_query(model, history)

Query the Anthropic API with the given history and return the response.

Source code in sweagent/agent/models.py
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
def anthropic_query(model: AnthropicModel | BedrockModel, history: list[dict[str, str]]) -> str:
    """
    Query the Anthropic API with the given `history` and return the response.
    """
    # Preserve behavior for older models
    if model.api_model in ["claude-instant", "claude-2.0", "claude-2.1"] or (
        isinstance(model, BedrockModel) and model.api_model in ["anthropic.claude-instant-v1", "anthropic.claude-v2"]
    ):
        # Perform Anthropic API call
        prompt = anthropic_history_to_messages(model, history)
        if isinstance(model, BedrockModel):
            # Use a dummy Anthropic client since count_tokens
            # is not available in AnthropicBedrock
            # https://github.com/anthropics/anthropic-sdk-python/issues/353
            input_tokens = Anthropic().count_tokens(prompt)
        else:
            input_tokens = model.api.count_tokens(prompt)
        completion = model.api.completions.create(
            model=model.api_model,
            prompt=prompt,
            max_tokens_to_sample=model.model_metadata["max_context"] - input_tokens
            if isinstance(model, Anthropic)
            else model.model_metadata["max_tokens_to_sample"],
            temperature=model.args.temperature,
            top_p=model.args.top_p,
        )
        # Calculate + update costs, return response
        response = completion.completion
        if isinstance(model, BedrockModel):
            output_tokens = Anthropic().count_tokens(response)
        else:
            output_tokens = model.api.count_tokens(response)
        model.update_stats(input_tokens, output_tokens)
        return response

    # Get system message(s)
    system_message = "\n".join([entry["content"] for entry in history if entry["role"] == "system"])
    messages = anthropic_history_to_messages(model, history)

    # Perform Anthropic API call
    response = model.api.messages.create(
        messages=messages,
        max_tokens=model.model_metadata["max_tokens"],
        model=model.api_model,
        temperature=model.args.temperature,
        top_p=model.args.top_p,
        system=system_message,
    )

    # Calculate + update costs, return response
    model.update_stats(response.usage.input_tokens, response.usage.output_tokens)
    return "\n".join([x.text for x in response.content])

get_model(args, commands=None)

Returns correct model object given arguments and commands

Source code in sweagent/agent/models.py
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
def get_model(args: ModelArguments, commands: list[Command] | None = None):
    """
    Returns correct model object given arguments and commands
    """
    if commands is None:
        commands = []
    if args.model_name == "instant_empty_submit":
        return InstantEmptySubmitTestModel(args, commands)
    if args.model_name == "human":
        return HumanModel(args, commands)
    if args.model_name == "human_thought":
        return HumanThoughtModel(args, commands)
    if args.model_name == "replay":
        return ReplayModel(args, commands)
    elif (
        args.model_name.startswith("gpt")
        or args.model_name.startswith("ft:gpt")
        or args.model_name.startswith("azure:gpt")
        or args.model_name in OpenAIModel.SHORTCUTS
    ):
        return OpenAIModel(args, commands)
    elif args.model_name.startswith("claude"):
        return AnthropicModel(args, commands)
    elif args.model_name.startswith("bedrock"):
        return BedrockModel(args, commands)
    elif args.model_name.startswith("ollama"):
        return OllamaModel(args, commands)
    elif args.model_name.startswith("deepseek"):
        return DeepSeekModel(args, commands)
    elif args.model_name in TogetherModel.SHORTCUTS:
        return TogetherModel(args, commands)
    elif args.model_name in GroqModel.SHORTCUTS:
        return GroqModel(args, commands)
    elif args.model_name == "instant_empty_submit":
        return InstantEmptySubmitTestModel(args, commands)
    else:
        msg = f"Invalid model name: {args.model_name}"
        raise ValueError(msg)