
Preprint

SWE-AGENT: AGENT-COMPUTER INTERFACES
ENABLE AUTOMATED SOFTWARE ENGINEERING

John Yang* 1 Carlos E. Jimenez* 1 Alexander Wettig1

Kilian Lieret1 Shunyu Yao1 Karthik Narasimhan1 Ofir Press1

1Princeton Language and Intelligence (PLI), Princeton University

ABSTRACT

Software engineering is a challenging task requiring proficiency in both code gen-
eration and interacting with computers. In this paper, we introduce SWE-agent,
an autonomous system that uses a language model to interact with a computer to
solve software engineering tasks. We show that a custom-built agent-computer in-
terface (ACI) greatly enhances the ability of an agent to create and edit code files,
navigate entire repositories and execute programs. On SWE-bench, SWE-agent
is able to solve 12.5% of issues, compared to the previous best of 3.8% achieved
with retrieval-augmented generation (RAG). We explore how ACI design impacts
an agent’s behavior and performance, and provide insights on effective design.

1 INTRODUCTION

Language models (LMs) have become helpful assistants for software development (Chen et al.,
2021; Austin et al., 2021; Li et al., 2022), with users playing the role of mediator between the LM
and the computer to complete programming tasks. For instance, after executing LM-generated code,
a user may request refinements from the LM based on computer feedback such as error messages.
More recently, LMs have been used as autonomous agents that interact with computer environments
without human intervention (Yang et al., 2023a; Wu et al., 2024; Xie et al., 2024). This approach has
the potential to accelerate software development, but remains largely unexplored in realistic settings.

LM Agent Filesystem
sklearn/
examples/
README.rst

Terminal

Computer
Agent-Computer Interface

Navigate repo

View files

LM-friendly commands
Search files

Edit lines

LM-friendly

environment feedback

Figure 1: An agent interacts with a computer through an agent-computer interface (ACI), which
includes the commands the agent uses and the format of the feedback from the computer.

This work introduces SWE-agent, an LM-based autonomous system that can interact with a com-
puter to solve challenging real-world software engineering problems from SWE-bench (Jimenez
et al., 2024). At every turn, SWE-agent outputs a thought and a command, and then receives feed-
back from the execution of the command in the environment (ReAct; Yao et al. (2023b)). As our
main contribution, we establish the importance of designing an agent-computer interface (ACI) to
enhance the LM agent’s performance. We find that custom ACIs tailored to LMs can outperform
existing user interfaces (UIs), such as the Linux shell, designed for human users.

Consider the baseline of using a Linux shell interface (Yang et al., 2023a), which naturally lends
itself to turn-based interaction with an LM agent due to its text-only input commands and outputs.

∗Equal contribution. Correspondence to {jy1682,carlosej}@princeton.edu.
Code and demo at swe-agent.com.

1

mailto:jy1682@princeton.edu
mailto:carlosej@princeton.edu
https://swe-agent.com

Preprint

In practice, we find that this is an unsuitable environment for agents. For example, it does not provide
simple commands to edit a small chunk of a file, and does not provide any feedback when invalid
edits are made (Figure 5, left). We find that this substantially hampers performance (Section 5). This
leads us to construct a novel agent-computer interface for SWE-agent, which provides commands
for viewing, searching through and editing files, along with carefully crafted environment feedback
(Figure 1), including informative error messages for edits that contain syntax errors (Figure 5, right).
We empirically show that these ACI elements substantially improve performance.

When using GPT-4 Turbo as the base LLM, SWE-agent solves 12.5% of the 2,294 SWE-bench
test issues, substantially outperforming the previous best resolve rate of 3.8% by a non-interactive,
retrieval-augmented system. We perform an ablation study on a subset of 300 SWE-bench test issues
to analyze our ACI design choices (Table 2), and show that SWE-agent solves 10.7 percentage points
more issues than the baseline agent that uses just the default Linux shell. Even though our ACI was
developed for GPT-4 Turbo, we find the interface transfers to a different LM, namely, SWE-agent
with Claude 3 Opus can solve 10.5% issues.

To summarize, our contributions are twofold: first, we build, evaluate, and open-source SWE-agent,
a state-of-the-art system that can solve real-world software engineering tasks, and second, we in-
troduce the concept of the agent-computer interface (ACI) and show how ACI design can lead to
substantial improvements in the performance of LM agents, without modifying the weights of the
underlying language model. We hope our work can drive the community towards further research
on autonomous LM agents and agent-computer interfaces (ACIs).

2 THE AGENT-COMPUTER INTERFACE

An LM acts as an agent by interacting with an environment through iteratively taking actions and
receiving feedback (Yao et al., 2023b; Sumers et al., 2023). Typically the environment is fixed, such
as in robotics, where agents control actuators in the physical world. However, digital environments
offer the flexibility of developing an interface between the agent and the computer, reflected by
the wide variety of interfaces for programs (application programming interfaces, APIs) and humans
(user interfaces, UIs). Here, we argue that LM agents represent a new category of end users and we
call the interface they use to interact with computers the agent-computer interface (ACI).

Observation
Found 13 matches for "rcode":

 sympy/printing/lambdarepr.py (1 matches)

 sympy/printing/rcode.py (12 matches)

Thought + Action

Our script confirms the issue: Max & Min are not being converted to R. Let’s search for rcode.
search_dir "rcode"

Observation
[Open file: sympy/printing/rcode.py (412 lines)] 

 sympy.core.numbers equal_valued

...

1:
2:

"""The RCodePrinter convert SymPy expressions to strings of R code""" 
from import

Thought + Action

The responsible file is likely to be We should open and inspect this file.rcode.py.
open sympy/printing/rcode.py

Thought + Action

edit 22:22 
 "Abs": "abs", 
 "Max": "max", 
 "Min": "min",

end_of_edit

We need to add entries Max/Min to known_functions, mapping them to R min/max.

Figure 2: This trajectory snippet shows how SWE-agent interacts with the computer using the ACI.
The LM-generated thoughts and actions are shown in blue, and the computer feedback in red.

Agents interact with a computer in a series of turns: iterating between the agent issuing commands
and the computer responding with the command’s output, visualized in Figure 2. The ACI specifies
the commands available to the LM and how the environment state after the execution of each com-
mand will be communicated back to the LM. It also tracks the history of all previous commands
and observations, and at each step, manages how these should be formatted and combined with
high-level instructions into a single input for the language model.

2

Preprint

In this paper, we keep the language model fixed, and we focus on designing the ACI to achieve
better performance. This means that we shape the available actions, their documentation, and the
environment feedback to complement a language model’s limitations and abilities. We use two ap-
proaches to enhance the ACI on a development set: We manually inspect the behaviour of the agent
to identify difficulties and propose improvements, and we run a grid search over ACI configurations.

This leads us to several observations on what makes for effective ACIs:

1. Actions should be simple and easy to understand. Many bash commands have documentation
that includes dozens of options. Simple commands with a few options and concise documentation
are easier for agents to use, reducing the need for demonstrations or fine-tuning. This is a defining
principle for all SWE-agent commands covered in Section 3.

2. Actions should be efficient. Important operations (e.g., file navigation, editing) should be con-
solidated into as few actions as possible. Efficient actions help agents make meaningful progress
towards a goal in a single step. A bad design is to have many simple actions that need to be
composed across multiple turns for a higher order operation to take effect. We incorporate this
into the Editing and Search interface designs covered in Section 3 and analyzed in Section 5.1.

3. Environment feedback should be informative. High quality feedback provides the agent with
substantive information about the current environment state (and the effect of the agent’s recent
actions) without providing unnecessary details. For instance, when editing a file, updating the
agent on the revised contents is helpful. Figures 3a, 3b and Table 2 provide evidence for this.

4. Guardrails mitigate error propagation. Like humans, LMs can make mistakes when editing or
searching, but LMs struggle to recover from these errors. Building in guardrails, such as a code
syntax checker, that automatically detects mistakes, can help agents recognize errors and then fix
them. We show the effect of editing guardrails in Table 2.

We provide analysis and ablation studies in Section 5 to show how alternative interfaces affect
performance.

3 SWE-AGENT: DESIGNING AN ACI FOR SOFTWARE ENGINEERING

SWE-agent uses an ACI that enables an LM to act as a software engineering agent. To evaluate
our system, we use SWE-bench, a benchmark for evaluating LMs on real world software issues col-
lected from GitHub (Jimenez et al., 2024). SWE-bench’s issue resolution task reflects an important
responsibility of software engineers: Given a codebase and a natural language request (e.g. feature
request, bug report), generate a codebase revision (i.e. a patch) that passes unit tests which verify
that the issue has been remedied. Solving these tasks requires performing a number of software
engineering sub-tasks, including bug localization, program repair, and writing tests.

Existing application interfaces to perform software engineering have naturally been designed around
the human user. For instance, developers frequently use GUI-based IDEs, such as VSCode, or
screen-based text editors, such as Vim. These interfaces have rich visual components and feedback
that make them powerful tools for humans, but may not be as suited to LMs.

Consider a text editor like Vim which relies on cursor-based line navigation and editing. Carrying
out any operation leads to long chains of granular and inefficient interactions. Furthermore, humans
can ignore unexpected inputs, such as accidentally outputting a binary file or thousands of lines
returned from a ‘grep’ search. LMs are sensitive to these types of inputs, which can be distracting
and take up a lot of the limited context available to the model. On the other end, commands that
succeed silently confuses LMs. We observe that LMs will often expend extra actions to verify that
a file was removed or an edit was applied if no automatic confirmation is given. We show that LMs
are substantially more effective when using interfaces built with their needs and limitations in mind.

SWE-agent overcomes these challenges by introducing powerful, tailored tools to provide agents
with a simplified interface to the computer; i.e. the agent-computer interface (ACI). A well-designed
ACI should help the agent understand the state of the repository given the previous changes. It should
also help the agent recover from mistakes, remove unnecessary context from prior observations, and
suppress any unusual, lengthy program outputs.

3

Preprint

Observation (File Viewer)

401:

402:

403:

404:

405:

406:

407:

408:

409:

[File: (3093 lines total)]
solvers/diophantine.py
(400 lines above)
        

(2684 lines below)

 total_degree 3:

 diop_type

 total_degree 3 :

 if all coeff k 1 :

 diop_type

 diop_type None:

 return var, coeff, diop_type

elif ==
=

elif >
==

=

if is not

"cubic_thue"

[]
'general_sum_even'

()
()

(a) Observation from the file viewer.

Response (Thought + Edit Action)

edit

end_of_edit

 :
 total_degree 3 and

 len set k.exp k.is_Pow 1):

 if all coeff k 1 :

 diop_type

404 407

elif >

==
==

=

(
(())

()
[]

[]
'general_sum_even'

We need to add a check to ensure that all powers
are the same. Let's edit the code to include this
check.

(b) Action using the edit interface.

Figure 3: The file viewer and edit command are integrated with each other. Here, in (a), the file
viewer shows the agent the contents of the open file with line numbers , and in (b), the agent invokes
the edit function to replace lines 404-407 in the open file. After the edit, the file viewer will show
the agent the updated version of the file again.

SWE-agent provides an ACI for LMs to act as software engineering agents, allowing them to effec-
tively search, navigate, edit, and execute code commands. SWE-agent does this through the careful
design of the agent’s search / navigation, file viewer, file editor, and context management. Our
system is built on top of the Linux shell and allows access to common Linux commands and utilities.
We describe the components of the SWE-agent interface in greater detail below.

Search / navigation. Navigating codebases requires finding the right file and content that is relevant
to your purposes. A common strategy for this is to look up terms that might be useful, like files,
functions, or class definitions mentioned in an issue. We introduce special commands find file,
search file, and search dir that output a summary of search results when searching for file-
names and strings within files or directories. Examples of these search result formats can be found
in Figures 8. The find file command can be used to search for filenames in the repository, while
the search file and search dir are used to locate strings in a file or the files of a subdirectory
respectively. Our interface encourages efficient searches by suppressing verbose results. The search
commands return at most 50 results for each search query. If a search produces more than 50 results,
we do not report the results and instead suggest to the agent to write a more specific query.

File viewer. Once models have found a file they want to view, they can do so using the interactive file
viewer by calling the command open on the file path they want to view. The file viewer presents
a window of at most 100 lines of the file at a time. The agent can move this window with the
commands scroll down and scroll up or skip to a specific line with the goto command. To
facilitate in-file navigation and code localization we display the full path of the open file, the total
number of lines in the file, the number of lines omitted before and after the current window, and the
line number (prepended to each line visible). An example of this interface is shown in Figure 3a.

File editor. We provide a few commands that allow models to create and edit files. The edit
command works in conjunction with the file viewer, allowing agents to replace a specific range of
lines in the open file. The edit command takes 3 required arguments: the start line, end line, and
replacement text. In a single step, agents can replace all lines between the start and end lines with the
replacement text, which is visualized in Figure 3b. After edits are applied, the file viewer automati-
cally displays the updated content, allowing the agent to observe the effects of its edit immediately
without needing to invoke any additional commands. An example agent response including an file
edit is shown in Figure 3b.

Similar to how humans may use tools like syntax highlighting to alert them of format errors when
editing files in an IDE, we integrate a code linter into the edit function to alert the model of mis-
takes it may have introduced when editing a file. Errors from the linter are shown to the model with
a snippet of the file contents before and after the error was introduced. Invalid edits are discarded
and the model is asked to try editing the file again.

Context management. The SWE-agent system uses informative prompts, error messages, and
history processors to keep agent context concise and informative. Agents receive instructions, docu-
mentation, and a demonstrations on the correct use of bash and ACI commands. At each step, agents
are instructed to generate both a thought and an action (Yao et al., 2023b). Malformed generations
trigger an error response, shown in Figure 15, asking the model to try again, which is repeated until
a valid generation is received. Once a valid generation is received, past error messages are omitted
except for the first. The agent’s environment responses display computer output using the template
shown in Figure 14, but if no output is generated, a specific message stating “Your command ran

4

Preprint

successfully and did not produce any output” is included to enhances clarity. To further improve
context relevance, observations preceding the last 5 are each collapsed into a single line. By remov-
ing most of the content from prior observations, we maintain essential information about the plan
and action history while reducing unnecessary content, which allows for more interaction cycles and
avoids showing outdated file content. More on the implementation is provided in Appendix A.

4 EXPERIMENTAL SETUP

Datasets. We evaluate on the SWE-bench dataset, which includes 2,294 task instances from 12
different repositories of popular Python packages (Jimenez et al., 2024). We report our main agent
results on the full SWE-bench test set and ablations and analysis on the SWE-bench Lite test set,
unless otherwise specified. SWE-bench Lite is a canonical subset of 300 instances from SWE-bench
with a focus on evaluating self-contained functional bug fixes.

Models. All results, ablations, and analysis are based on two leading LMs, GPT-
4 Turbo (gpt-4-1106-preview) (OpenAI et al., 2023) and Claude 3 Opus
(claude-3-opus-20240229) (Chiang et al., 2024). We experimented with a number of
additional closed and open source models, including Llama 3 and DeepSeek Coder, but found their
performance in the agent setting to be subpar. Many LMs’ context window is too small, such as
Llama 3 with a context window of 8k. GPT-4 Turbo and Claude 3 Opus have 128k and 200k token
context windows respectively,1 which provides enough room for the LM to interact for several turns
after being fed the initial set of system, issue description, and optionally, demonstrations.

Baselines. We compare SWE-agent against two baselines. The first setting is the non-interactive,
retrieval-augmented generation (RAG) baselines established in Jimenez et al. (2024). Here, a BM25
retrieval system is used to retrieve the most relevant codebase files using the issue as the query.
Provided these files, the model is asked to directly generate a patch file that resolves the issue.

The second setting, called Shell only, is adapted from the interactive coding framework introduced
in Yang et al. (2023a). Following the InterCode environment, this interactive baseline system asks
the LM to resolve the issue by interacting with a shell process on Linux. Like SWE-agent, the model
prediction is generated automatically based on the final state of the codebase after interaction.

Metrics. We report % Resolved as the main metric, which is the proportion of instances for which
all tests pass successfully after the model generated patch is applied to the repository (Jimenez et al.,
2024). We also report the $ Avg. Cost metric, the average API inference cost incurred from running
SWE-agent on a task instance, for successful instances. Due to budget constraints we set the per-
instance budget to $4. If a run exceeds this budget, the existing edits are submitted automatically.

Configuration Choice. During the design process of SWE-agent, we arrived at the final ACI design
through qualitative analysis of system behavior on small set of hand-picked easier examples from
the development split of SWE-bench. For the remaining hyperparameter choices, we perform a
hyperparameter sweep over the window size, history processing, and decoding temperature. Further
description of the configuration choice is provided in Appendix A.

5 RESULTS

Main Results. Across all systems, SWE-agent with GPT-4 Turbo yields the best performance,
solving 12.47% (286/2,294) of the full SWE-bench test set and 18.00% (54/300) of the Lite split.

We present several empirical ablations that quantify Agent-Computer Interface design’s effect on
task performance. We provide insights on language agents’ behavior and common failure modes.

5.1 ANALYSIS OF INTERFACE DESIGN

Following Section 3, we perform several ablations of the SWE-agent interface, specifically with
respect to the SWE-agent w/ GPT-4 set up. The performance of each ablation relative to SWE-agent

1Token counts for different models are not directly comparable, since they use different tokenizers.

5

Preprint

Table 1: Main results for SWE-agent performance on the full and Lite splits of the SWE-bench
test set. We benchmark models in the SWE-agent, Basic CLI, and Retrieval Augmented Generation
(RAG) settings established in SWE-bench (Jimenez et al., 2024).

SWE-bench SWE-bench Lite

Model % Resolved $ Avg. Cost % Resolved $ Avg. Cost

RAG
w/ GPT-4 Turbo 1.31 0.13 2.67 0.13
w/ Claude 3 Opus 3.79 0.25 4.33 0.25

Shell-only agent
w/ GPT-4 Turbo - - 11.00 1.46

w/o Demonstration - - 7.33 0.79

SWE-agent
w/ GPT-4 Turbo 12.47 1.59 18.00 1.67
w/ Claude 3 Opus 10.46 2.59 13.00 2.18

w/ GPT-4’s performance on SWE-bench Lite is denoted by the red arrow. Our case studies shed
light on interesting agent behavior along with the impact of different ACI designs.

Table 2: SWE-bench Lite performance under ablations to the SWE-agent interface, which is denoted
by . We consider different approaches to searching and editing (see Figures 4 and 5 respectively)
and study how information should be presented to the language model by varying the window size
of the file viewer and comparing to agents without a demonstration or without history management.

Editor

edit action 15.0 ↓ 3.0
w/ linting 18.0

Shell-only 10.3 ↓ 7.7

Search

Summarized 18.0
Iterative 12.0 ↓ 6.0
Shell-only 15.7 ↓ 2.3

File Viewer

30 lines 14.3 ↓ 3.7
100 lines 18.0
400 lines 17.0 ↓ 1.0
Full file 12.7 ↓ 5.3

Context

w/ demo. 18.0
Full history 15.0 ↓ 3.0

w/o demo. 16.3 ↓ 1.7

Human user interfaces are not always suitable as agent-computer interfaces. Current LMs are
vulnerable to a number of pitfalls when searching for relevant content in the Shell-only environment.
Some exploration patterns (e.g. chains of cd, ls, cat) are extremely inefficient. grep or find
look ups can be better, but occasionally produce many lines of irrelevant results. We hypothesize
that better localization is possible with faster navigation and a more informative search interface.

Search with Vanilla CLI
Agent performs manual search with ls + cd, or
uses grep but struggles to interpret the result

 First, I should list out all the

files in the codebase that may contain

the definition of PVSystem.

$ ls

 It’s most likely the source file is in

pvlib/ folder. Let’s change directory.

$ cd pvlib/

benchmarks/

docs/

pvlib/

setup.py

setup.cfg

versioneer.py

README.md

...

Actions to show next/prev search result are
repeated many times until results are exhausted

 I will use the `search_all` command

to find occurrences of "PVSystem”...

$ search “PVSystem”

 This is not the PVSystem class def...

$ next

[Result 1/15 (Line 70)] 
[File: pvlib/pvsystem.py] 
22:# a dict of required pa... 
23:_DC_MODEL_PARAMS = { 
24: 'sapm': { 
(97 more lines omitted)

UI-inspired Search
(1) Show all results in single output

(2) Tell agent to retry if too many results.

 The next step is to locate the

`PVSystem` class in the codebase and

modify the constructor...

$ search “class PVSystem”

 It’s located in `pvlib/pvsystem.py`...

$ open pvlib/pvsystem.py

Found 1 matches for "class

 PVSystem" in /pvlib-python: 
/pvlib__pvlib-python/pvlib/

 pvsystem.py (1 matches) 
End of matches

LM-friendly Search
Agent performs manual search with ls + cd, or
uses grep but struggles to interpret the result

 First, I should list out all the

files in the codebase that may contain

the definition of PVSystem.

$ ls

 It’s most likely the source file is in

pvlib/ folder. Let’s change directory.

$ cd pvlib/

benchmarks/

docs/

pvlib/

setup.py

setup.cfg

versioneer.py

README.md

...

Actions to show next/prev search result are
repeated many times until results are exhausted

 I will use the `search_all` command

to find occurrences of "PVSystem”...

$ search “PVSystem”

 This is not the PVSystem class def...

$ next

[Result 1/15 (Line 70)] 
[File: pvlib/pvsystem.py] 
22:# a dict of required pa... 
23:_DC_MODEL_PARAMS = { 
24: 'sapm': { 
(97 more lines omitted)

(1) Show all results in single output

(2) Tell agent to retry if too many results.

 The next step is to locate the

`PVSystem` class in the codebase and

modify the constructor...

$ search “class PVSystem”

 It’s located in `pvlib/pvsystem.py`...

$ open pvlib/pvsystem.py

Found 1 matches for "class

 PVSystem" in /pvlib-python: 
/pvlib__pvlib-python/pvlib/

 pvsystem.py (1 matches) 
End of matches

Iterative Search Summarized SearchShell-only Search

Figure 4: Visualizations of three different versions of the Search interface for task instance
pvlib pvlib-python-1224. In Shell-only, an agent performs localization strictly with stan-
dard bash commands and utilities. Compared to Iterative search, Summarized search shows an
exhaustive list of search results and also provides guidance on refining underspecified queries.

Figure 4 compares the Shell-only setting with two different search interfaces. Iterative search, di-
rectly inspired by traditional user interfaces for search, such as Vim or VSCode, shows results one
by one via the file viewer. Agents can look through results using next and prev actions. Each
result displays the matching line along with n surrounding lines of context. An advantage is that an
agent can begin editing directly after seeing the relevant code in its search. However, when given a

6

Preprint

large number of search results, agents tend to look through every match exhaustively, calling next,
until each result has been inspected. This inefficient behavior can exhaust an agent’s cost budget
or context window, leading to performance even worse than the Shell-only setting (15.7%↓ 2.3 for
Shell-only vs. 12.0%↓ 6.0 with Iterative search).

 To fix the issue, we need to modify

the `MathematicaParser` class...

$ sed -i "/# trig/i \'λ':'Symbol(\"λ\")'..."

 I’ll use cat to display `sympy/
parsing/mathematica.py`...

$ cat parsing/mathematica.py

File Content (~1079 Lines)

 It seems there’s a misunderstanding...
I’ll write a Python script to add the rules...

$ echo (30 more lines omitted)

(No Output)

Shell-only Editing

 Let's edit the `_atom_conversions`
dictionary to include the mapping....

$ edit 1055:1059 [Code Snippet]
end_of_edit

1053: 
1054: 
1055: 
1056: 
1057: 
1058: 
1059: 
1060: 
1061: 
1062:

 Function=_parse... 
) 
_atom_conversions = { 
 "I": I, 
 "Pi": pi, 
 "E": E, 
 "λ": symbols('lamda'), 

def _from_fullform...

} 
} 

 Syntax

Error!

Editing w/o Linting

 Let's edit the `_atom_conversions` ...
 (Same as first action)Editing

Your proposed edit has introduced

new syntax error(s). 
- E999 IndentationError

How your edit would have looked... 

The original code before your edit 

Your changes have NOT been applied.

Fix your edit command & try again.

[File Viewer w/ Edit Applied] 

[File Viewer of Original Code]

 The edit introduces an extra `{`. I will
update my edit command to fix this...

$ edit 1055:1060 [Code Snippet] end_of_edit

Editing w/ Linting
“LM-centric” edit = (1) Show file before & after
edit (2) Block edits with syntax or compile errors

Failure Modes: (1) No std. out causes uncertainty
(2) cat floods context window (3) LMs must track

many states (e.g. line #s, pre/post-edit)

edit consolidates necessary steps → 1 action,
but recovery from self-incurred errors is difficult

Figure 5: Visualizations of three different versions of the Edit component for task instance
sympy sympy-24102. Editing with Bash commands requires several actions to successfully
modify a file. The Editing component defines an edit command that leverages the File Viewer
component to replaces the Bash style editing workflow with a single command. Linting is beneficial
to stymieing cascading errors that often starts with an error-introducing edit by the agent.

Compact, efficient file editing is critical to performance. SWE-agent’s file editor and viewer is
designed to consolidate the editing process into a single command that allows for easy multi-line
edits with consistent feedback that automatically updates the agent’s view of the file after editing.
In the Shell-only setting, editing options are restrictive and prone to errors. The primary methods
available are either replacing entire files through redirection and overwriting or utilizing utilities like
sed for single-line or search-and-replace edits. Both methods have significant drawbacks. Redirec-
tion involves copying and rewriting entire files for even minor changes, which is both inefficient and
error-prone. Although sed can facilitate specific edits, executing multi-line edits is cumbersome
and can lead to unintended consequences that are challenging to detect. Moreover, both strategies
lack immediate feedback about file updates, making these silent operations potentially confusing
for models to interpret and increasing the risk of errors. Without SWE-agent’s file editor interface,
performance drops to (10.3% ↓ 7.7). We also find that agents are sensitive to the number of lines the
file viewer displays. Both too little content (30 lines, 14.3% ↓ 3.7) or too much (entire file, 12.7%
↓ 5.3) leads to lower performance.

Guardrails can improve error recovery. A prominent failure mode is when models repeatedly
edit the same code snippet. The usual suspect for this behavior is when an agent introduces
a syntax error (e.g., wrong indentation, extra parenthesis) via an errant edit. As discussed in
Section 3, we add an intervention to the edit logic such that a modification only applies if it does
not produce major errors. We compare this interface with the Shell-only and no-linting alternative
in Figure 5. This intervention improves performance considerably (Without Linting, 15.0% ↓ 3.0).

5.2 ANALYSIS OF AGENT BEHAVIOR

Consistent problem solving patterns emerge when LMs are equipped with a useful, intuitive ACI. In
this section, we discuss several model behaviors and problem solving patterns that can be discerned
from model performance and each model’s corresponding trajectories.

Reproduction and/or localization is the first step. SWE-agent usually starts a problem by at-
tempting to write reproduction code and/or localizing the issue’s cause to specific code based on file
names and symbols referenced in the issue description. This is reflected in Table 3 and Figure 6,
where four of the most frequent patterns involve performing such diagnostics. To reproduce, models
will create a new file, add reproduction code to it with an edit, then run with python (#2 in
Table 8). Localization happens both in the absence of and after reproduction; using file names and
symbols referenced in the issue description, agents will then invoke search dir, search file
(#8, 10), and find file (#9) to identify the root cause. In Figure 6, the distributions for the

7

Preprint

Table 3: The 10 most frequently
occurring patterns in trajectories of
resolved task instances by SWE-
agent w/ GPT-4. We define a pat-
tern as 3 consecutive actions.

Pattern Count

edit (3x) 308
create, edit, python 215
edit, python, edit 196
edit, python, rm 157
python, rm, submit 142
python, edit, python 125
edit, edit, python 122
open, search file, goto 107
edit, python, find file 98
search file, goto, edit 82

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Turn

0

50

100

150

200

250

Fr
eq

ue
nc

y

Distribution of Actions per Turn
search dir
search file
find file
find
create
edit
exit cost
submit

open
scroll up
scroll down
goto
python3
python
pytest

Figure 6: We display the frequency with which actions are in-
voked at each turn by SWE-agent w/ GPT-4 for task instances
that it solved on the SWE-bench full test set (286 trajectories).

first four turns strongly correlate with these trends. Table 8 further corroborates this observation by
showing the most frequent patterns per turn.

A majority of turns are spent editing. From turn 5 onwards, the most frequent two actions for
all turns are edit and python. We show a normalized view of Figure 6 in Figure 13 for easy
comparison. The dominant pattern, also captured in Tables 3 and 8, is a repetition of editing a
file followed by running the original reproduction script to check if the change has the intended
effect. For turns 8 to 16, submit is the third most invoked action. From manual inspection, our
conclusions are that agents rarely deviate from this pattern but they rarely recognize dead ends or
reset their problem solving approach.

Agents succeed fast and fail slowly. We find that runs submitted relatively early are much more
likely to be successful compared to runs submitted after a larger number of steps or cost. We show in
Table 10 the distribution of resolved and unresolved instances, including only instances that did not
exhaust their budget. We observe that successful runs complete earlier and at cheaper cost compared
unsuccessful submissions. Overall, successful instances solved by SWE-agent w/ GPT 4 finish with
an median cost of $1.21 and 12 steps compared to a mean of $2.52 and 21 steps for unsuccessful
ones. Further, we find that 93.0% of resolved instances are submitted before exhausting their cost
budget. For these reasons, we suspect that increasing the maximum budget or token limit are unlikely
to lead to substantial increases in performance.

6 RELATED WORK

6.1 SOFTWARE ENGINEERING BENCHMARKS

Code generation benchmarks, which evaluate models on the task of synthesizing code from nat-
ural language descriptions, have served as a long standing bellwether for measuring LM perfor-
mance (Chen et al., 2021; Austin et al., 2021; Hendrycks et al., 2021; Lu et al., 2021). Subsequent
works have built upon the code generation task formulation to contribute new benchmarks that
translate problems to different (programming) languages (Cassano et al., 2022; Wang et al., 2023b),
incorporate third party libraries (Lai et al., 2022; Liu et al., 2024b), introduce derivative code com-
pletion tasks (Muennighoff et al., 2024; Huang et al., 2024), increase test coverage (Liu et al., 2023),
change the edit scope (Ding et al., 2023; Yu et al., 2023; Du et al., 2023), and add robustness to
dataset contamination (Jain et al., 2024). Code generation problems are largely self-contained, with
short problem descriptions (∼100 lines) and corresponding solutions that are similarly brief, requir-
ing nothing more complex than basic language primitives. Tests are either handwritten or generated
synthetically via fuzz testing. In recent months, rapid development of LMs has begun to saturate
many of these benchmarks. The top method solves 94.4% of HumanEval (Zhou et al., 2023a).

Gauging future trends with the code generation task paradigm may be limited by the simplicity
of this setting and cost of human-in-the-loop problem creation. In response, recent efforts have

8

Preprint

demonstrated that software engineering (SE) can serve as a diverse, challenging testbed for LM
evaluation (Zhang et al., 2023; Jimenez et al., 2024; Liu et al., 2024a). Repository-level code editing
introduces many reasoning challenges grounded in real SE subtasks such as spotting errant code,
identifying cross-file relationships, and understanding codebase-specific symbols and conventions.
As a field, SE has generally studied tasks in a more isolated manner; prior benchmarks tend to frame
problems in isolation from the rest of a codebase (Just et al., 2014; Karampatsis & Sutton, 2019).

We use SWE-bench because it unites many separate SE tasks such as automated program repair (Xia
& Zhang, 2022; Fan et al., 2023; Sobania et al., 2023), bug localization (Chakraborty et al., 2018;
Yang et al., 2024), and testing (Kang et al., 2023; Xia et al., 2023; Wang et al., 2023a) under a single
task formulation that faithfully mirrors practical SE. Furthermore, SWE-bench task instances are
diverse, having been collected from real GitHub issues across 12 different repositories. In addition,
SWE-bench performance is based on rigorous, automatic execution-based evaluation.

6.2 LANGUAGE MODELS AS AGENTS

The co-emergence of stronger LMs, increasingly challenging benchmarks, and practical use cases
have all together motivated a paradigm shift in LMs’ inference setting. In place of traditional
zero/few-shot generation, language agents (Sumers et al., 2023; Xi et al., 2023; Wang et al., 2024a),
which use LMs to interact with a real/virtual world, have proliferated as the default setting for web
navigation (Nakano et al., 2022; Thoppilan et al., 2022; Yao et al., 2023a;b; Zhou et al., 2023b;
Sridhar et al., 2023; Press et al., 2023; Koh et al., 2024), computer control (Wu et al., 2024; Xie
et al., 2024), and code generation tasks (Yin et al., 2022; Wang et al., 2023c).

Interaction and code generation are increasingly used together, with code as the modality of choice
for actions (Yang et al., 2023a; Wang et al., 2024b), tool construction (Wang et al., 2024c; Zhang
et al., 2024; Gu et al., 2024), and reasoning (Zelikman et al., 2022; 2024; Shinn et al., 2023). Code
language agents have also been applied to offensive security (Yang et al., 2023b; Shao et al., 2024;
Fang et al., 2024), theorem proving (Thakur et al., 2024), and clinical tasks (Shi et al., 2024b).

To the best of our knowledge, SWE-agent is the first work to explore language agents for end-to-end
software engineering (SE). A key observation we noticed when designing SWE-agent is that many
interactive methods, which perform well for rudimentary code completion tasks, do not work for
more general settings like SE, a trend also exhibited by baselines for difficult math and competitive
programming benchmarks (Shi et al., 2024a).

SWE-agent’s takeaways are a reliable indicator of the robustness and scalability of agents’ ability
to reason with code. In addition, prior works tend to independently explore the merits of tool use,
prompting techniques, and code execution in interactive settings. Agent-Computer Interface design
accounts for the sum of these factors under a unified framework and introduces the idea that crafting
LM-centric interactive components has meaningful effects on downstream task performance.

7 DISCUSSION

We introduce SWE-agent, a language agent for software engineering that achieves state-of-the-art
performance on SWE-bench. Through our design methodology, empirical results, and analysis, we
demonstrate the process and value of designing agent-computer interfaces (ACI) tailored for agents.
We release our code, prompts and generations, and set up the codebase to allow for easy extension
to new commands, and feedback and agent history formats. We hope that SWE-agent will serve as
a foundation that inspires future work towards more versatile and powerful agents.

Beyond various empirical applications, we hope the further study of ACIs could also make principled
use and contribute to our understanding of language models and agents, analogous to the synergy
between human-computer interaction (HCI) and psychology (Carroll, 1997). Humans and LMs have
different characteristics, training objectives, specialities, and limitations (Griffiths, 2020; McCoy
et al., 2023), and the interface design processes can be seen as systematic behavioral experimentation
that could reveal more insights into these differences, and establish a comparative understanding of
human and artificial intelligence.

9

Preprint

ACKNOWLEDGEMENTS

We thank Austin W. Hanjie, Sam Ainsworth, Xindi Wu, Yuhan Liu, Mengzhou Xia, Dan Friedman,
Tianyu Gao, Adithya Bhaskar, Aatmik Gupta, Louisa Nyhus, and Richard Zhu for their valuable
feedback and advice. We would also like to thank the broader Princeton Language and Intelli-
gence community for supporting our work. We acknowledge support from an Oracle Collaborative
Research award and the National Science Foundation under Grant No. 2239363. Any opinions,
findings, conclusions, or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021.

John M Carroll. Human-computer interaction: psychology as a science of design. Annual review of
psychology, 48(1):61–83, 1997.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and extensible approach to bench-
marking neural code generation, 2022.

Saikat Chakraborty, Yujian Li, Matt Irvine, Ripon Saha, and Baishakhi Ray. Entropy guided spec-
trum based bug localization using statistical language model. arXiv preprint arXiv:1802.06947,
2018.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, and
Jared Kaplan et. al. Evaluating large language models trained on code, 2021.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica.
Chatbot arena: An open platform for evaluating llms by human preference, 2024.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Kr-
ishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, and Bing Xiang. Crosscodee-
val: A diverse and multilingual benchmark for cross-file code completion. In Thirty-seventh Con-
ference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL
https://openreview.net/forum?id=wgDcbBMSfh.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evaluat-
ing llms on class-level code generation, 2023.

Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei Tan. Automated
repair of programs from large language models, 2023.

Richard Fang, Rohan Bindu, Akul Gupta, Qiusi Zhan, and Daniel Kang. Llm agents can au-
tonomously hack websites, 2024.

Thomas L Griffiths. Understanding human intelligence through human limitations. Trends in Cog-
nitive Sciences, 24(11):873–883, 2020.

Yu Gu, Yiheng Shu, Hao Yu, Xiao Liu, Yuxiao Dong, Jie Tang, Jayanth Srinivasa, Hugo Latapie, and
Yu Su. Middleware for llms: Tools are instrumental for language agents in complex environments,
2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps, 2021.

10

https://openreview.net/forum?id=wgDcbBMSfh

Preprint

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents
on machine learning experimentation, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

René Just, Darioush Jalali, and Michael D. Ernst. Defects4J: A Database of existing faults to enable
controlled testing studies for Java programs. In ISSTA 2014, Proceedings of the 2014 International
Symposium on Software Testing and Analysis, pp. 437–440, San Jose, CA, USA, July 2014. Tool
demo.

Sungmin Kang, Juyeon Yoon, and Shin Yoo. Large language models are few-shot testers: Exploring
llm-based general bug reproduction, 2023.

Rafael-Michael Karampatsis and Charles Sutton. How often do single-statement bugs occur?
the manysstubs4j dataset. 2020 IEEE/ACM 17th International Conference on Mining Software
Repositories (MSR), pp. 573–577, 2019. URL https://api.semanticscholar.org/
CorpusID:173188438.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks, 2024.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for
data science code generation, 2022.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. arXiv
preprint arXiv:2305.01210, 2023.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=pPjZIOuQuF.

Yuliang Liu, Xiangru Tang, Zefan Cai, Junjie Lu, Yichi Zhang, Yanjun Shao, Zexuan Deng, Helan
Hu, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao, Liang Chen, Yan Wang,
Tianyu Liu, Zhiwei Jiang, Baobao Chang, Yujia Qin, Wangchunshu Zhou, Yilun Zhao, Arman
Cohan, and Mark Gerstein. Ml-bench: Evaluating large language models for code generation in
repository-level machine learning tasks, 2024b.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu
Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code understanding
and generation, 2021.

R Thomas McCoy, Shunyu Yao, Dan Friedman, Matthew Hardy, and Thomas L Griffiths. Embers
of autoregression: Understanding large language models through the problem they are trained to
solve. arXiv preprint arXiv:2309.13638, 2023.

11

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://api.semanticscholar.org/CorpusID:173188438
https://api.semanticscholar.org/CorpusID:173188438
https://openreview.net/forum?id=pPjZIOuQuF

Preprint

Niklas Muennighoff, Qian Liu, Armel Randy Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack: Instruc-
tion tuning code large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=mw1PWNSWZP.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback, 2022.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt
Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman,
Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wo-
jciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng,
Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2023.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah Smith, and Mike Lewis. Mea-
suring and narrowing the compositionality gap in language models. In Houda Bouamor, Juan

12

https://openreview.net/forum?id=mw1PWNSWZP

Preprint

Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 5687–5711, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.378. URL https://aclanthology.org/2023.
findings-emnlp.378.

Minghao Shao, Boyuan Chen, Sofija Jancheska, Brendan Dolan-Gavitt, Siddharth Garg, Ramesh
Karri, and Muhammad Shafique. An empirical evaluation of llms for solving offensive security
challenges, 2024.

Quan Shi, Michael Tang, Karthik Narasimhan, and Shunyu Yao. Can language models solve
olympiad programming?, 2024a.

Wenqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Jieyu Zhang, Hang Wu, Yuanda Zhu, Joyce Ho, Carl
Yang, and May D. Wang. Ehragent: Code empowers large language models for few-shot complex
tabular reasoning on electronic health records, 2024b.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. An analysis of the automatic
bug fixing performance of chatgpt, 2023.

Abishek Sridhar, Robert Lo, Frank F. Xu, Hao Zhu, and Shuyan Zhou. Hierarchical prompting
assists large language model on web navigation, 2023.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive architec-
tures for language agents, 2023.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An in-
context learning agent for formal theorem-proving, 2024.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee, Huaixiu Steven
Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin,
James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Vin-
cent Zhao, Yanqi Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Pranesh
Srinivasan, Laichee Man, Kathleen Meier-Hellstern, Meredith Ringel Morris, Tulsee Doshi,
Renelito Delos Santos, Toju Duke, Johnny Soraker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John, Josh Lee,
Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya Kuzmina, Joe Fenton,
Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas, Claire Cui, Marian Croak,
Ed Chi, and Quoc Le. Lamda: Language models for dialog applications, 2022.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. Software
testing with large language model: Survey, landscape, and vision, 2023a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Ji-
akai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on
large language model based autonomous agents. Frontiers of Computer Science, 18(6), March
2024a. ISSN 2095-2236. doi: 10.1007/s11704-024-40231-1. URL http://dx.doi.org/
10.1007/s11704-024-40231-1.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better llm agents, 2024b.

Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F. Xu, and Graham Neubig. Mconala: A bench-
mark for code generation from multiple natural languages, 2023b.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based evaluation for
open-domain code generation, 2023c.

Zhiruo Wang, Daniel Fried, and Graham Neubig. Trove: Inducing verifiable and efficient toolboxes
for solving programmatic tasks, 2024c.

13

https://aclanthology.org/2023.findings-emnlp.378
https://aclanthology.org/2023.findings-emnlp.378
http://dx.doi.org/10.1007/s11704-024-40231-1
http://dx.doi.org/10.1007/s11704-024-40231-1

Preprint

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement,
2024.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Jun-
zhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao
Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou,
Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuan-
jing Huang, and Tao Gui. The rise and potential of large language model based agents: A survey,
2023.

Chunqiu Steven Xia and Lingming Zhang. Less training, more repairing please: revisiting automated
program repair via zero-shot learning. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 959–
971, 2022.

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang. Uni-
versal fuzzing via large language models. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, 2023.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024.

Aidan Z. H. Yang, Claire Le Goues, Ruben Martins, and Vincent Hellendoorn. Large lan-
guage models for test-free fault localization. In Proceedings of the IEEE/ACM 46th Interna-
tional Conference on Software Engineering, ICSE ’24, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400702174. doi: 10.1145/3597503.3623342. URL
https://doi.org/10.1145/3597503.3623342.

John Yang, Akshara Prabhakar, Karthik R Narasimhan, and Shunyu Yao. Intercode: Standardizing
and benchmarking interactive coding with execution feedback. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023a. URL https:
//openreview.net/forum?id=fvKaLF1ns8.

John Yang, Akshara Prabhakar, Shunyu Yao, Kexin Pei, and Karthik R Narasimhan. Language
agents as hackers: Evaluating cybersecurity skills with capture the flag. In Multi-Agent Security
Workshop@ NeurIPS’23, 2023b.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In The Eleventh International Con-
ference on Learning Representations, 2023b. URL https://openreview.net/forum?
id=WE_vluYUL-X.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua How-
land, Paige Bailey, Michele Catasta, Henryk Michalewski, Alex Polozov, and Charles Sutton.
Natural language to code generation in interactive data science notebooks, 2022.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yu Ma, Guangtai Liang, Ying Li, Tao Xie,
and Qianxiang Wang. Codereval: A benchmark of pragmatic code generation with generative
pre-trained models. In International Conference on Software Engineering, 2023. URL https:
//api.semanticscholar.org/CorpusID:256459413.

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah D Goodman, and Nick Haber. Parsel: Algo-
rithmic reasoning with language models by composing decompositions, 2022. URL https:
//arxiv.org/abs/2212.10561.

Eric Zelikman, Eliana Lorch, Lester Mackey, and Adam Tauman Kalai. Self-taught optimizer (stop):
Recursively self-improving code generation, 2024.

14

https://doi.org/10.1145/3597503.3623342
https://openreview.net/forum?id=fvKaLF1ns8
https://openreview.net/forum?id=fvKaLF1ns8
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://api.semanticscholar.org/CorpusID:256459413
https://api.semanticscholar.org/CorpusID:256459413
https://arxiv.org/abs/2212.10561
https://arxiv.org/abs/2212.10561

Preprint

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. In The 2023 Conference on Empirical Methods in Natural Language Processing,
2023. URL https://openreview.net/forum?id=q09vTY1Cqh.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun Wu.
Training language model agents without modifying language models, 2024.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models, 2023a.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic web environ-
ment for building autonomous agents, 2023b.

15

https://openreview.net/forum?id=q09vTY1Cqh

Preprint

APPENDIX

In the appendix, we provide additional analyses and more extensive discussions about SWE-agent,
Agent Computer Interface (ACI) Design, and model performance on the full and Lite splits of SWE-
bench. We also provide several thorough, manually curated case studies of SWE-agent performance
on select task instances.

A SWE-AGENT INTERFACE

System Prompt
 Describe environment and command
 Specify response format

 Give reported issue descriptio
 Instructions to resolve issu
 High-level strategy tips

Issue statement

Demonstration
Full trajectory of a successful example

Thought & Action

Environment Response (collapsed)

Environment Response

Thought & Action

Thought & Action

Environment Response

Submit

Patch File
diff --git a/src/sqlfluff/rules/L060.py
b/src/sqlfluff/rules/L060.py 
--- a/src/sqlfluff/rules/L060.py 
+++ b/src/sqlfluff/rules/L060.py

...

Figure 7: An overview over the struc-
ture of a trajectory: We first present
the system prompt, demonstration (op-
tional), and issue statement. The agent
then interacts in turn with the environ-
ment. Past observations may be col-
lapsed, i.e. we truncate any long output,
as described in Section 3.

In this section, we go into greater discussion about the
design methodology, appearance, and implementation of
each of the SWE-agent components. As described in
Section 3, the SWE-agent interface is consists of sev-
eral components that enable agents to accomplish key
sub-tasks that are fundamental to solving software en-
gineering problems. Namely: localizing which file(s)
require editing, generating edits to fix the described is-
sue, and writing scripts to verify the correctness of fixes.
To enable LM-based agents to efficiently carry out these
individual functions and progress towards the overarch-
ing goal of resolving a codebase issue, we provide a file
viewer, file editor, search / navigation system, and con-
text management system. In Section A.1, we provide a
thorough breakdown of each of these components. In
Section A.2, we discuss how SWE-agent is configured
to support the final interface, along with how SWE-agent
is built to enable easy extensibility and customization to
alter the interface. Finally, in Section A.3, we discuss
the technical design decisions and challenges of building
out SWE-agent, along with an overview of the advantages
and shortcomings of using SWE-agent as a platform for
future explorations of agent-driven software engineering
systems.

A.1 COMPONENT DESIGN

In this section, we revisit each component discussed in
Section 3. First, we describe the motivation for the com-
ponent, then provide complete descriptions of their in-
put requirement(s), output format, usage, and notes about
what parts of the interface heavily influence language
model behavior.

File Viewer. As discussed in Section 3, the File Viewer
is fundamental to a language agent’s ability to understand file content and invoke appropriate edits.
In a Terminal-only setting, there are several commands that can be used to inspect file content.
However, out of the box command line tools are sub-optimal or limiting for language agents for
several reasons. First, commands that print files to standard output (e.g. cat, printf) can easily
flood a language agent’s context window with too much file content, the majority of which is usually
irrelevant to the issue. Enabling a language agent to filter out distractions and focus on relevant code
snippets is crucial to generating effective edits. While commands like head and tail reduce length
to the first/last n lines, it is not intuitive to use bash commands to perform in-file navigation. It is
either impossible or requires a long list of arguments to show specific file lines. Furthermore, since
such Bash commands are stateless, “scrolling” up/down relative to the current file position typically
requires regenerating the same lengthy command with minor changes. Interactive tools like more
and less accommodate this, but (1) representing navigation actions (multiple key up/down clicks)
is intuitive for humans, but is verbose and costly for language agents, and (2) even if jumping to a

16

Preprint

File Viewer
open atmosphere.py

Find Files

Found 2 matches for "atmosphere.py" in /pvlib__pvlib-python/pvlib:

/pvlib__pvlib-python/pvlib/tests/atmosphere.py

/pvlib__pvlib-python/pvlib/atmosphere.py

find_file atmosphere.py

Search Directory

Found 4 matches for "APPARENT_ZENITH_MODELS" in /pvlib__pvlib-
python:

/pvlib__pvlib-python/docs/sphinx/source/whatsnew/v0.3.0.txt (1
matches)

/pvlib__pvlib-python/pvlib/atmosphere.py (2 matches)

/pvlib__pvlib-python/pvlib/location.py (1 matches)

End of matches for "APPARENT_ZENITH_MODELS" in /pvlib__pvlib-
python

search_dir APPARENT_ZENITH_MODELS

Search File

Found 2 matches for "APPARENT_ZENITH_MODELS" in /pvlib__pvlib-
python/pvlib/atmosphere.py:

Line 12:APPARENT_ZENITH_MODELS = ('simple', 'kasten1966',
'kastenyoung1989',

Line 15:AIRMASS_MODELS = APPARENT_ZENITH_MODELS +
TRUE_ZENITH_MODELS

End of matches for "APPARENT_ZENITH_MODELS" in /pvlib__pvlib-
python/pvlib/atmosphere.py

search_file APPARENT_ZENITH_MODELS

(255 more lines above)

256:def gueymard94_pw(temp_air, relative_humidity):

257: r"""

258: Calculates precipitable water (cm) from ambient air temperature (C)

259: and relatively humidity (%) using an empirical model. The

260: accuracy of this method is approximately 20% for moderate PW (1-3

261: cm) and less accurate otherwise.

262:

263: The model was developed by expanding Eq. 1 in [2]_:

264:

265: .. math::

266:

267: Pw = 0.1 H_v \rho_v

343:

344:

345:def bird_hulstrom80_aod_bb(aod380, aod500):

346: """

347: Approximate broadband aerosol optical depth.

348:

349: Bird and Hulstrom developed a correlation for broadband aerosol

350: depth (AOD) using two wavelengths, 380 nm and 500 nm.

351:

352: Parameters

353: ----------

354: aod380 : numeric

355: AOD measured at 380 nm. [unitless]

(180 more lines below)

(76 lines omitted)

Figure 8: The File Viewer and Search components of the SWE-agent interface. The corresponding
commands for each component are shown in blue. These examples are copied from trajectories
generated by SWE-agent w/ GPT-4 Turbo on the pvlib pvlib-python-1603 task instance.

specific line number is allowed, it is not possible to quickly identify what classes/methods/symbols
are declared in a file and go to their definitions.

We provide a visualization of the File Viewer component in Figure 8.

A.2 CONFIGURATION

The SWE-agent system is instantiated by three functional components: a language model, a config-
uration, and a shell process running in a Docker container.

An agent-computer interface is made up of four categories of configurable components:

1. Prompt templates - templates prompts are used to inform the language model of the envi-
ronment and API, augment environment responses with the values of state variables, and
provide the initial task setting.

2. Command files - these files contain the source code of bash or Python functions and scripts.
Commands are easily modified, added, and removed through manipulating these files’ code
contents directly. Documentation added in these files can also be injected into prompts to
inform the model of the available commands.

3. Control flow - methods for parsing model responses and processing history can be specified
through these configuration arguments.

4. Environment variables - initial values of variables that may interact with commands and
the shell can also be specified in the configuration.

A.3 IMPLEMENTATION

17

Preprint

Table 4: In additional to the standard Linux Bash commands, we provide SWE-agent with special-
ized tools, including an interactive file viewer, search functionalities, and edit tools for the open file.
Required arguments are enclosed in <> and optional arguments are in [].

Category Command Documentation

File
viewer

open <path>
[<line number>]

Opens the file at the given path in the editor.
If line number is provided, the window will
move to include that line.

goto <line number> Moves the window to show line number.

scroll down Moves the window up 100 lines.

scroll up Moves the window down 100 lines.

Search
tools

search file <search term>
[<file>]

Searches for search term in file. If file is not
provided, searches in the current open file.

search dir <search term>
[<dir>]

Searches for search term in all files in dir.
If dir is not provided, searches in the current di-
rectory.

find file <file name>
[<dir>]

Finds all files with the given name in dir. If dir is
not provided, searches in the current directory.

File
editing

edit <n>:<m>
<replacement text>
end of edit

Replaces lines n through m (inclusive) with
the given text in the open file. All of the
replacement textwill be entered, so make
sure your indentation is formatted properly.
Python files will be checked for syntax errors
after the edit. If an error is found, the edit will
not be executed. Reading the error message and
modifying your command is recommended as
issuing the same command will return the same
error.

create <filename> Creates and opens a new file with the given
name.

Task submit Generates and submits the patch from all previ-
ous edits and closes the shell.

18

Preprint

Table 5: Hyper parameter sweep results on a subset of the dev split. % Resolved shows the mean
score across 5 samples.

Model Temperature Window History % Resolved

GPT-4 Turbo 0.0 100 Full 14.1
GPT-4 Turbo 0.0 100 Last 5 15.1
GPT-4 Turbo 0.0 200 Full 9.2
GPT-4 Turbo 0.0 200 Last 5 10.8
GPT-4 Turbo 0.2 100 Full 10.8
GPT-4 Turbo 0.2 100 Last 5 12.4
GPT-4 Turbo 0.2 200 Full 8.7
GPT-4 Turbo 0.2 200 Last 5 10.8

Claude 3 Opus 0.0 100 Full 5.4
Claude 3 Opus 0.0 100 Last 5 8.1
Claude 3 Opus 0.0 200 Full 7.0
Claude 3 Opus 0.0 200 Last 5 7.1
Claude 3 Opus 0.2 100 Full 7.4
Claude 3 Opus 0.2 100 Last 5 8.1
Claude 3 Opus 0.2 200 Full 8.1
Claude 3 Opus 0.2 200 Last 5 6.8

A.4 HYPERPARAMETER SWEEP

We performed a hyperparameter sweep using a subset of 37 instances sampled randomly from the
dev split of SWE-bench.

B EXTENDED RESULTS

In this section, we provide additional results, including performance marginalized against differ-
ent dimensions, patch generation statistics, and problem solving patterns reflected by SWE-agent
trajectories. Per analysis, we provide numerical or qualitative evidence that supports our findings,
describe our takeaways from each finding, and discuss both the strengths of SWE-agent relative to
prior baselines along with future directions based on improving common failure modes in SWE-
agent’s performance.

B.1 MODEL PERFORMANCE

We present analyses of model performance marginalized across different dimensions and categories.

Performance by Repository. We include a repository-by-repository breakdown of model per-
formance on the SWE-bench Lite dataset in Table 6. We also include and adjust the perfor-
mance of Claude 2 on SWE-bench, inherited from the baseline performances established in the
original work. As presented above, SWE-agent performance is superior to prior approaches,
solving not only a higher percentage of problems across repositories, but also resolving prob-
lems in repositories that were previously nearly or completely unsolved by prior approaches (e.g.
matplotlib/matplotlib, sympy/sympy).

Temporal Analysis. In Table 7, we provide a temporal breakdown that shows the % Resolved
statistics for task instances from different years. There is no clear correlation between a task in-
stance’s creation year and its resolution rate across either models or setting. For instance, while the
SWE-agent w/ GPT-4 approach solves the highest percentage of problems from 2021, the RAG w/
GPT-4 and SWE-agent w/ Claude 3 Opus approaches perform best on task instances from 2022.

19

Preprint

Table 6: % Resolved performance across repositories represented in the SWE-bench Lite dataset.
Each row corresponds to a repository while each column is the model’s performance for that repos-
itory. The numbers in parentheses in the “Repo” column is the number of task instances in SWE-
bench Lite that are from the corresponding repository.

SWE-agent RAG

Repo GPT 4 Claude 3 Opus GPT 4 Claude 3 Opus Claude 2

astropy/astropy (6) 16.67% 33.33% 0.00% 0.00% 0.00%
django/django (114) 26.32% 16.67% 4.39% 6.14% 5.26%
matplotlib/matplotlib (23) 13.04% 13.04% 0.00% 0.00% 0.00%
mwaskom/seaborn (4) 25.00% 0.00% 25.00% 25.00% 0.00%
pallets/flask (3) 0.00% 0.00% 0.00% 0.00% 0.00%
psf/requests (6) 33.33% 16.67% 0.00% 0.00% 0.00%
pydata/xarray (5) 0.00% 0.00% 20.00% 20.00% 0.00%
pylint-dev/pylint (6) 16.67% 0.00% 0.00% 0.00% 0.00%
pytest-dev/pytest (17) 17.65% 5.88% 0.00% 5.88% 5.88%
scikit-learn/scikit-learn (23) 17.39% 17.39% 0.00% 4.35% 8.70%
sphinx-doc/sphinx (16) 6.25% 6.25% 0.00% 0.00% 0.00%
sympy/sympy (77) 10.39% 5.19% 1.30% 2.60% 0.00%

Table 7: % Resolved performance for task instances from different years represented in the SWE-
bench Lite dataset. Each row corresponds to a year while each column is the model’s performance
for task instances with a created at timestamp from that year. The numbers in parentheses in
the Year column is the number of task instances in SWE-bench Lite from that corresponding year.

SWE-agent RAG

Year GPT 4 Claude 3 Opus GPT 4 Claude 3 Opus Claude 2

2023 (30) 23.33% 13.33% 3.33% 3.33% 0.0%
2022 (57) 21.05% 17.54% 5.26% 7.02% 1.75%
2021 (42) 23.81% 11.9% 2.38% 4.76% 2.38%
2020 (66) 10.61% 7.58% 3.03% 1.52% 1.52%
Before 2020 (105) 17.14% 10.48% 0.95% 4.76% 5.71%

B.2 TRAJECTORY ANALYSIS

Turns to Resolution. Figure 9 visualizes the distribution of the number of turns SWE-agent
needed to complete task instances that were successfully resolved. On the full SWE-bench test
set, SWE-agent w/ GPT-4 takes an average of 14.71 turns to finish a trajectory, with a median of 12
turns and 75% of trajectories being completed within 18 turns. On the Lite split of the SWE-bench
test set, SWE-agent w/ Claude 3 Opus takes an average of 12.71 turns to finish a trajectory, with a
median of 13 turns and 75% of trajectories being completed within 15 turns. From the distribution,
it is evident that across models and SWE-bench splits, the majority of task instances are typically
solved and completed comfortably within the number of allotted turns. This also points to a gen-
eral area of improvement for language agent systems - if a language agent’s initial problem solving
approach, typically reflected in the first 10 to 20 turns, does not yield a good solution, it struggles
to make use of later turns that build upon past mistakes. To remedy this issue and induce stronger
error recovery capabilities in language agents, future directions could consider improving either the
model, the companion ACI, or both. While modeling innovations and better data for language mod-
els is a heavily investigated ongoing research direction, we purport that building more adaptive and
powerful ACIs may be a much more efficient and generalizable solution for solving difficult interac-
tive tasks with language agents. For instance, one can imagine improving the context management
system such that it can recognize unsuccessful or unproductive turns in a problem solving trajectory,
then synthesize these turns into a more succinct and helpful error message that prompts the model
to attempt a different problem solving approach which avoids repeating past faults.

20

Preprint

Figure 9: Distribution of the number of turns for interactive trajectories corresponding to solved
task instances. The left histogram shows this distribution for SWE-agent w/ GPT 4 on the full SWE-
bench test set (286 trajectories). The right histogram is the performance of SWE-agent w/ Claude 3
Opus on the Lite split of the SWE-bench test set (35 trajectories).

5 10 15 20 25 30 35 40
Turn

0

10

20

30

40

50

60

C
ou

nt

Resolved by Turn (GPT 4, Full)

4 6 8 10 12 14 16 18
Turn

0

1

2

3

4

5

C
ou

nt

Resolved by Turn (Claude 3 Opus, Lite)

Figure 10: The distribution of agent trajectories by total steps (left) and cost (right) for SWE-agent
with GPT-4 Turbo on SWE-bench. The distributions of resolved instances are shown in orange
and unresolved are shown in blue. Resolved instances clearly display an earlier mean and fewer
proportion of trajectories with many steps or that cost near the maximum budget of $4.00.

5 10 15 20 25 30 35

Total Steps

0

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y

Submitted Prediction Total Steps by Resolution
Resolved

True
False

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Cost (USD)

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

Submitted Prediction Cost by Resolution
Resolved

True
False

B.3 PERFORMANCE VARIANCE AND PASS@kATE

Since running SWE-agent on SWE-bench can be rather expensive, we perform, all results, unless
otherwise stated, are reported using a pass@1 metric (% Resolved). However, we also test our main
SWE-agent configuration for a higher number of runs to test the variance and pass@k performance
for k ∈ {3, 6}. These results are shown in Table 9, suggesting that average performance variance is
relatively low, though per-instance resolution can change considerably.

21

Preprint

Figure 11: We assign each pattern to one of five categories (as presented in Table 8) and present a
histogram of the turns at which patterns from specific categories show up frequently.

1-
3

2-
4

3-
5

4-
6

5-
7

6-
8

7-
9

8-
10

9-
11

10
-1

2

11
-1

3

12
-1

4

Turns

0

50

100

150

200

Fr
eq

ue
nc

y

Freq. of Pattern Categories per Turn
Localization (Line)
Localization (File)
Editing
Reproduction
Submission

Figure 12: This density plot shows a normalized distribution of actions across different turns of
a trajectory. exit cost refers to when the token budget cost was exhausted and the episode’s
changes are automatically submitted (contrary to an intentional submit invoked by the agent).

0 5 10 15 20 25 30 35 40
Turn

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

Density Plots of Actions across Turns

search dir
search file
find file
create
edit
exit cost
submit
python

22

Preprint

Table 8: Similar to Table 3, we present a table of the most frequently occurring action patterns
at each turn (“frequently” means ≥ 4 times) in trajectories of task instances resolved by SWE-
agent w/ GPT-4. For instance, the pattern create,edit,python appears 156 times at the first
to third turns. In addition, we also manually assign each entry a category (Reproduction, Editing,
Localization (File), Localization (Line), Submission) that generally captures the underlying purpose
of such a pattern.

Turns Pattern Count Category

1-3 create, edit, python 156 Reproduction
1-3 search dir, open, search file 21 Localization (File)
1-3 search dir, open, scroll down 12 Localization (Line)
1-3 create, edit, edit 11 Reproduction
1-3 search dir, open, edit 10 Localization (Line)
2-4 edit, python, find file 71 Localization (File)
2-4 edit, python, edit 37 Reproduction
2-4 edit, python, search dir 26 Localization (File)
2-4 edit, python, open 15 Localization (File)
2-4 open, edit, edit 13 Editing
2-4 open, edit, create 13 Editing
2-4 open, scroll down, scroll down 9 Localization (Line)
2-4 open, scroll down, edit 5 Editing
2-4 open, edit, submit 5 Submission
3-5 python, find file, open 61 Localization (File)
3-5 python, edit, python 25 Editing
3-5 search file, goto, edit 24 Localization (Line)
3-5 python, search dir, open 23 Localization (File)
3-5 edit, create, edit 13 Editing
3-5 python, edit, edit 11 Editing
3-5 python, open, edit 7 Editing
3-5 python, find file, find file 7 Localization (File)
3-5 edit, edit, submit 4 Submission
3-5 edit, edit, create 4 Editing
4-6 find file, open, edit 28 Editing
4-6 find file, open, search file 19 Localization (Line)
4-6 edit, edit, python 11 Reproduction
4-6 goto, edit, edit 8 Editing
4-6 find file, open, goto 8 Localization (Line)
4-6 goto, edit, submit 7 Submission
4-6 goto, edit, create 7 Editing
4-6 find file, open, scroll down 6 Localization (Line)
4-6 scroll down, scroll down, edit 5 Localization (Line)
4-6 find file, find file, open 5 Localization (File)
5-7 open, search file, goto 29 Localization (Line)
5-7 open, edit, python 20 Editing
5-7 open, goto, edit 7 Editing
5-7 scroll down, edit, submit 4 Submission
6-8 scroll down (x3) 6 Localization (Line)
6-8 search file, goto, scroll down 4 Localization (Line)
7-9 edit, python, rm 20 Editing
7-9 goto, edit, python 12 Editing
8-10 python, rm, submit 19 Submission
8-10 search file, goto, search file 4 Localization (File)
9-11 edit (x3) 18 Editing
9-11 edit, open, edit 6 Editing
9-11 goto, search file, goto 4 Localization (Line)

23

Preprint

Figure 13: A normalized view of Table 6. The distributions for turn n are normalized across the
number of trajectories that have a length of at least n or more turns.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Turn

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Distribution of Actions per Turn (Normalized)
search dir
search file
find file
find
create
edit
exit cost
submit
open
scroll up
scroll down
goto
python3
python
pytest

Table 9: Pass@k performance for SWE-agent with GPT-4 Turbo on SWE-bench Lite.

SWE-bench Lite

Model pass@1 pass@3 pass@6

SWE-agent
w/ GPT-4 Turbo 17.94% 27.35% 32.67%

24

Preprint

C PROMPTS

We provide a visualization of the variety of prompts used as part of SWE-agent.

Figure 14: The environment’s response template. This is emitted after each observation to inform
the model of the current state of the shell and programs.

Response Template

{OBSERVATION}
(Open file: /path/to/open/file.py)
(Current directory: /path/to/cwd)
bash-$

Figure 15: The environment’s error message. This is emitted if a model generation doesn’t conform
to the thought-action format suggested.

Error Message

Your output was not formatted correctly. You must always include one
discussion and one command as part of your response. Make sure you do
not have multiple discussion/command tags.
Please make sure your output precisely matches the following format:
DISCUSSION
Discuss here with yourself about what your planning and what you're
going to do in this step.

```
command(s) that you're going to run
```

Figure 16: The system prompt for SWE-agent describes the environment. The documentation
field is populated with brief description of all enabled commands, similar to Table 4.

System Prompt

SETTING: You are an autonomous programmer, and you’re working directly in the command line with
a special interface.
The special interface consists of a file editor that shows you 100 lines of a file at a time. In addition to
typical bash commands, you can also use the following commands to help you navigate and edit files.
COMMANDS: {documentation}
Please note that THE EDIT COMMAND REQUIRES PROPER INDENTATION. If you’d like to add the
line ‘ print(x)’ you must fully write that out, with all those spaces before the code! Indentation is
important and code that is not indented correctly will fail and require fixing before it can be run.
RESPONSE FORMAT:
Your shell prompt is formatted as follows:
(Open file: <path>) <cwd> $
You need to format your output using two fields; discussion and command. Your output should always
include one discussion and one command field EXACTLY as in the following example:
DISCUSSION
First I’ll start by using ls to see what files are in the current directory. Then maybe we can look at some
relevant files to see what they look like.
```
ls -a
```
You should only include a SINGLE command in the command section and then wait for a response from
the shell before continuing with more discussion and commands. Everything you include in the DISCUS-
SION section will be saved for future reference. If you’d like to issue two commands at once, PLEASE
DO NOT DO THAT! Please instead first submit just the first command, and then after receiving a response
you’ll be able to issue the second command. You’re free to use any other bash commands you want (e.g.

25

Preprint

find, grep, cat, ls, cd) in addition to the special commands listed above. However, the environment does
NOT support interactive session commands (e.g. python, vim), so please do not invoke them.

Figure 17: A simplified demonstration template showing how demonstrations are provided to the
model as a single message. Here we show only the final 3 turns in the demonstration for brevity.

Demonstration

Here is a demonstration of how to correctly accomplish this task.
It is included to show you how to correctly use the interface.
You do not need to follow exactly what is done in the demonstration.
--- DEMONSTRATION ---
{{INSTANCE PROMPT}}

The code has been updated to use the `round` function, which should
fix the rounding issue. Before submitting the changes, it would
be prudent to run the reproduce.py code again to ensure that this
change has the desired effect. I see that "Current directory" is
still `/marshmallow-code__marshmallow`, so we can just run
`reproduce.py` directly.

↪→
↪→
↪→
↪→
↪→
```
python reproduce.py
```
345

(Open file: /marshmallow-code__marshmallow/src/marshmallow/fields.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
The output has changed from 344 to 345, which suggests that the

rounding issue has been fixed. Let's remove the reproduce.py file
since it is no longer needed.

↪→
↪→
```
rm reproduce.py
```
Your command ran successfully and did not produce any output.
(Open file: /marshmallow-code__marshmallow/src/marshmallow/fields.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
rm doesn't have any output when it deletes successfully, so that must

have worked. Now that we have fixed the issue, we should submit
our changes to the code base. Let's submit the changes using the
`submit` command.

↪→
↪→
↪→
```
submit
```
--- END OF DEMONSTRATION ---

26

	Introduction
	The Agent-Computer Interface
	 SWE-agent: Designing an ACI for Software Engineering
	Experimental Setup
	Results
	Analysis of Interface Design
	Analysis of Agent Behavior

	Related Work
	Software Engineering Benchmarks
	Language Models as Agents

	Discussion
	SWE-agent Interface
	Component Design
	Configuration
	Implementation
	Hyperparameter Sweep

	Extended Results
	Model Performance
	Trajectory Analysis
	Performance Variance and Rate

	Prompts

